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Abstract

In the paper we propose to convert NP-hard combinato-
rial optimization problems of packing, covering, and tiling
types into maximum or 𝑘-clique problems. The key step is
to come up with a tactically constructed auxiliary graph
whose maximum or 𝑘-cliques correspond to the sought com-
binatorial structure. As an example, we will consider the
problem of packing a given cube by copies of a brick. The
aim of the paper is two fold to illustrate (i) the modeling
power and (ii) the feasibility of the clique approach. Since
theoretical tools are not readily available to study the effec-
tiveness of the solution of the resulting clique problems we
will carry out carefully conducted numerical experiments.
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1 Introduction

One can see graphs as a mathematical models that can
describe various fields of interest. Like numbers, functions,
or Linear Programming graph based approach can model
interesting problems and aid us in solving them. Some
of these approaches are quite straightforward like cliques
of people in a social interaction graphs or shortest path
problem in a road map. Other approaches are less obvious
but still easily constructed, like conflict graphs in a set of
codewords where a maximum independent set represents a
maximum set of suitable error correcting codes [9].

But the approach of modeling and solving various prob-
lems by graphs are more versatile. Namely, we can see
graphs as a language for mathematical programming – if
certain combinatorial problems can be solved by construct-
ing a suitable auxiliary graph and finding a maximum or
𝑘-clique of this graph gives the solution. The authors have
already used this approach in connection with mathemat-
ical conjectures [1], hyper graph coloring [11], subgraph
isomorphism [2], scheduling problems [12], graph coloring
problems [13] and protein docking problems in chemistry
[8].

Here we would like to give an example, where a hard
combinatorial optimization problem can be solved by this
approach. For this we chose a simple to understand but
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numerically hard to solve problem of brick packing popular-
ized by M. Gardner. We will focus on different approaches
of how to construct an auxiliary graph in order that to
translate this problems into a clique search problem. We
will try to investigate how these different approaches –
based on packing, covering and tiling– affect the solving
time and if they have other consequences as well. First,
we describe the basic problem, then we present theoretical
discussion of different reformulations, and finally we de-
scribe the results of numerical experiments. The emphasis
is on the modeling aspect of the computation and not on
reaching new records, as the proposed problem was solved
in theoretical manner within months of its formulation.
Here we use it as a prototype of similar problems, and our
aim to show the versatility of our approach, that is model
a problem by a graph.

Graphs in this paper will be finite simple graphs. Further
all graphs we use will not have loops or double edges. A
finite simple graph 𝐺 can be described with its set of nodes
𝑉 and a subset 𝐸 of the Cartesian product 𝑉 × 𝑉 . The
subset 𝐸 can be identified by the set of edges of 𝐺.

Let 𝐺 = (𝑉,𝐸) be a finite simple graph. A non-empty
subset 𝐶 of 𝑉 is called a 𝑘-clique if each two distinct nodes
of 𝐶 are adjacent in 𝐺 and in addition 𝐶 has exactly 𝑘
elements. If 𝐶 has only one element, then we consider it a
1-clique. The 2-cliques of 𝐺 are the edges of 𝐺. A 𝑘-clique
𝐶 of 𝐺 is called a maximum clique if 𝐺 does not have
any (𝑘 + 1)-clique. For each finite simple graph 𝐺 there is
an integer 𝑘 such that 𝐺 contains a 𝑘-clique but 𝐺 does
not contain any (𝑘 + 1)-clique. This well defined integer
𝑘 is called the clique number of 𝐺. We state two clique
problems formally.

Problem 1. Given a finite simple graph 𝐺 and an inte-
ger 𝑘. Decide if 𝐺 has a 𝑘-clique.

Problem 2. Compute the clique number of a given finite
simple graph.

Problem 1 is a decision problem, it is referred as the 𝑘-
clique problem, and it is an NP-complete problem included
in the original list of 21 NP-complete problems by Karp
[7]. Problem 2 is an optimization problem and referred as
the maximum clique problem, and as the decision problem
belongs to the NP-complete class it follows that it belongs
to the NP-hard class.

We color the nodes of a finite simple graph 𝐺 with the
colors 1, 2, . . . , 𝑘 such that each node receives exactly one
color and adjacent nodes never receive the same color. Such
a coloring of the nodes of 𝐺 is called a well coloring, a
proper coloring, or a legal coloring (the terminology is not
unified). The set of nodes of 𝐺 receiving the color 𝑖 is called
the 𝑖-th color class. Clearly, a color class is an independent
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set of 𝐺, that is, two nodes from a fixed color class are
never adjacent.

If the nodes of a finite simple graph can be legally colored
using 𝑘 colors, then we say that 𝐺 is a 𝑘-partite graph.
The reason is that in this situation the nodes of 𝐺 form a
union of 𝑘 independent sets and these sets are pair-wise
disjoint.

In this paper we will focus on the following clique prob-
lem.

Problem 3. Given a finite simple graph 𝐺 whose nodes
are legally colored using 𝑘 colors. Decide if 𝐺 has a 𝑘-clique.

Problem 3 is a 𝑘-clique problem particularized to case
of 𝑘-partite graphs. This problem is still an NP-complete
problem, as the graph coloring problem can be reduced to
such question as shown in [13], and should not be confused
with the problem of complete graphs.

The problem class we will be focusing on in the present
paper consists of packing, covering, or tiling problems.
Obviously many real world and mathematical problems
fall into this class, and here we would show some ideas how
such problems can be modeled by a suitably constructed
auxiliary graph where a 𝑘-clique search would solve the
original problem.

2 Packing, covering, and tiling

First, we describe the problem class in question. Second,
we draw up some basic concepts how these problems can
be modeled by graphs.

Let 𝑈 be a finite ground set and let

𝐴1, . . . , 𝐴𝑚 (1)

be subsets of 𝑈 . A family of subsets

𝐵1, . . . , 𝐵𝑛 (2)

with {𝐵1, . . . , 𝐵𝑛} ⊆ {𝐴1, . . . , 𝐴𝑚} is called a packing of
𝑈 if the members of the family (2) are pair-wise disjoint. A
family of subsets (2) is called a covering of 𝑈 if the union of
(2) is equal to 𝑈 . Phrasing it differently, a family of subsets
(2) is a covering of 𝑈 if each element of 𝑈 belongs to at
least one member of the family (2). If a family of subsets
(2) is a packing and a covering of 𝑈 in the same time, then
it is called a tiling of 𝑈 . A tiling of 𝑈 some times referred
as exact covering of 𝑈 .

A packing of 𝑈 is called a 𝑘-packing if it consists of
𝑘 subsets of 𝑈 . Similarly, a covering of 𝑈 is called a 𝑘-
covering if it consists of 𝑘 subsets of 𝑈 . Finally, a tiling
of 𝑈 is called a 𝑘-tiling if it consist of 𝑘 subsets of 𝑈 . For
a given ground set 𝑈 and for its given subsets (1) there
is an integer 𝑘 such that 𝑈 has a 𝑘-packing using subsets
of the family (1) but there is no any (𝑘 + 1)-packing of 𝑈
using members of the family (1). This well defined integer
𝑘 is the packing number of 𝑈 with respect to the family
(1). If the packing number of 𝑈 is equal to 𝑘, then each
𝑘-packing of 𝑈 is called maximum packing of 𝑈 .

For a given ground set 𝑈 and for its given subsets (1)
there is an integer 𝑘 such that 𝑈 has a 𝑘-covering using
subsets of the family (1) but there is no any (𝑘−1)-covering
of 𝑈 using members of the family (1). This well defined
integer 𝑘 is the covering number of 𝑈 with respect to the
family (1). If the covering number of 𝑈 is equal to 𝑘, then
each 𝑘-covering of 𝑈 is called minimum covering of 𝑈 .

We state five problems related to packings, coverings,
and tilings in a formal manner. Given a finite set 𝑈 and
its subsets (1).

Problem 4. Decide if 𝑈 has a 𝑘-packing using the mem-
bers of the family (1).

Problem 5. Decide if 𝑈 has a 𝑘-covering using the
members of the family (1).

Problem 6. Decide if 𝑈 has a 𝑘-tiling using the mem-
bers of the family (1).

Problem 7. Compute the packing number of 𝑈 with
respect to the family (1).

Problem 8. Compute the covering number of 𝑈 with
respect to the family (1).

Problem 4 can be reduced to Problem 1. We construct a
finite simple graph 𝐺. The nodes of 𝐺 are the members of
the family (1). Two distinct nodes 𝐴𝑖 and 𝐴𝑗 are adjacent
in 𝐺 whenever 𝐴𝑖 and 𝐴𝑗 are disjoint. A 𝑘-clique in 𝐺
corresponds to a 𝑘-packing of 𝑈 .

Problem 5 can be reduced to Problem 3. We sketch the
main points of this reduction. We construct a finite simple
graph 𝐺. The first type of nodes of 𝐺 are ordered pairs
(𝐵, 𝑥), where 𝐵 ∈ {𝐴1, . . . , 𝐴𝑚}, 1 ≤ 𝑥 ≤ 𝑘. The intuitive
meaning of the pair (𝐵, 𝑥) that the subset 𝐵 is the 𝑥-th
member of a 𝑘 element family of (1). To the node (𝐵, 𝑥)
we assign the color 𝑥. Two nodes receiving the same color
will be non-adjacent in 𝐺. Therefore the first type nodes
of 𝐺 are legally colored with 𝑘 colors.

We are adding second type nodes to 𝐺. Namely, we are
adding the ordered pairs (𝐴, 𝑢), where 𝐴 ∈ {𝐴1, . . . , 𝐴𝑚},
𝑢 ∈ 𝑈 and in addition 𝑢 ∈ 𝐴 holds. The intuitive meaning
of the pair (𝐴, 𝑢) is that the element 𝑢 is covered by set
𝐴. To the node (𝐴, 𝑢) we assign 𝑢 as a color. Two nodes
receiving the same color will not be adjacent in 𝐺. Thus
the second type nodes of 𝐺 are legally colored using 𝑡 = |𝑈 |
colors. Now if we are locating a (𝑘 + 𝑡)-clique in 𝐺, then
we select exactly 𝑘 subsets from (1) and each element of
𝑈 will belong to at least one of these subsets. The missing
part of the construction, what we left for the reader, is how
the first and second types of nodes are connected by edges.

Problem 6 can be reduced to Problem 3. As a tiling is
a packing and covering at the same time, we can add the
packing restrictions, namely not connecting two sets if they
intersect, to the second type of nodes. On the other hand
– in case of equal size sets –, we do not need to count the
used sets, so we won’t need the first type of nodes, they
can be omitted.

The computational difficulties of the 𝑘-packing, 𝑘-covering,
and 𝑘-tiling problems are different. It seems that the cov-
ering problems are the computationally most demanding
and the tiling problems are the most manageable.

3 Gardner’s bricks problem

We picked Gardner’s problem because it is intuitive and
easy to comprehend among such problems that can be
reduced to Problem 3 and so it serves as a good illustration
of the kind of clique modeling we are dealing with. We do
not claim any originality in connection with the problem.
We do not prove any new results. Each of the facts we
use are known from the folklore and we present them only
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for the reader convenience. The problem was raised by
Foregger in March 1975 [10], popularized by Gardner in
February 1976 [5], and solved by Foregger and Mather in
November 1976 [3].

Let us consider a brick 𝐵 of dimensions 1× 2× 4. The
brick 𝐵 is a union 8 unit cubes whose edges are parallel to
the coordinate axis. From some reason unknown for us the
brick 𝐵 is referred as canonical brick. Suppose we have a
large supply of congruent copies of 𝐵 and we want to pack
as many as possible into a 7× 7× 7 cube 𝐶. The cube 𝐶
is a union of 343 unit cubes. Let us divide 343 by 8 with
remainder. As 343 = (42)(8) + (7), 43 copies of 𝐵 cannot
be packed into 𝐶. M. Gardener advanced the question if
42 copies of 𝐵 can be placed into 𝐶. One can place a copy
of 𝐵 into 𝐶 in any possible rotated position as long the
edges of 𝐵 are parallel to the coordinate axis. (The answer
to this question is actually: No, one cannot place 42 bricks
into a cube of size 7× 7× 7.)

Gardner’s problem can be expressed in terms of comput-
ing the clique number of a suitable constructed graph 𝐺.
In other words, Gardner’s problem can be reduced to an
instance of the maximum clique problem. Let us denote the
set of the 343 unit cubes forming 𝐶 by 𝑈 . An 8 elements
subset 𝑣 of 𝑈 is a vertex of 𝐺 if the union of the elements
of 𝑣 is a congruent copy of 𝐵. As it turns out 𝐺 has 1008
nodes. Two distinct nodes 𝑣 and 𝑣′ of 𝐺 are adjacent in 𝐺
if 𝑣 and 𝑣′ are disjoint. If 𝐺 contains a (42)-clique, then
42 congruent copies of 𝐵 can be packed into 𝐶. During
our numerical experiments a greedy coloring procedure
provided a legal coloring of the nodes of 𝐺 using 42 colors.
Note that this is just a coincidence, it could’ve happened
otherwise. Thus we are facing with a particular case of
the 𝑘-clique problem stated in Problem 3. The nodes of 𝐺
are legally colored with 42 colors and we are looking for a
(42)-clique in 𝐺. Phrasing it differently, we are looking for
a 𝑘-clique in a 𝑘-partite graph, where 𝑘 = 42.

We introduce a coordinate system whose origin coincides
with a corner of the cube 𝐶.

Observation 1. If 42 congruent copies of the brick 𝐵
can be packed into 𝐶, then there is such a packing which
contains the congruent copy of 𝐵 whose one corner is the
origin. Further the edges of lengths 1, 2, 4 are parallel to
the first, second and third coordinate axis, respectively.

Proof. As 343 = (42)(8) + (7) holds, 7 unit cubes of
𝐶 are not contained by any bricks of the packing. The
cube 𝐶 has 8 corners and so at least one of the corners
must be contained by a brick. At this point we introduce a
coordinate system whose origin is this corner of 𝐶. Then
we introduce the first, second, and third coordinate axis to
satisfy our requirement. □

The cube 𝐶 can be sliced into 7 slabs using planes
perpendicular to the first coordinate axes. Each slab is a
1𝑥7𝑥7 slice of the big cube, that is a union of 49 unit cubes.
The centers of these cubes are in a plane perpendicular to
the first coordinate axis. The 7 unit cubes of 𝐶, that are
not contained by any brick of the packing, are referred as
unpacked unit cubes.

Observation 2. Two distinct uncovered unit cubes of
𝐶 cannot be in the same slab.

Proof. Note that a fixed slab can contain only 0, 2 or 4
unit cubes from any brick of the packing. The point is that
the numbers 0, 2, 4 are all even. Each slab consists of an odd
number of unit cubes. Therefore, each slab must contain an
odd number of unpacked unit cubes. The number of slabs
is 7 and so each slabs must contain exactly one unpacked
unit cube. □

We can also form slabs by slicing 𝐶 with planes per-
pendicular to the second coordinate axes. Each of these
7 slabs contains exactly one unpacked unit cube. Finally,
slicing 𝐶 by planes perpendicular to the third axes we get
that each of these slabs contains exactly one unpacked unit
cubes. These constraints on the uncovered unit cubes are
independent, but can also be checked independently during
an extended search, and as such can reduce the search
space well.

4 Numerical experiments

Gardner’s brick packing problem can be turned into various
clique search problems and we carried out numerical exper-
iments with them. We will observe that the same geometric
problem will lead to very different clique search problems.
When we try to pack 42 congruent copies of the canonical
brick 𝐵 into the the big cube 𝐶, we get a 𝑘-clique problem.
When we notice that the nodes of the auxiliary graph can
be legally colored using 42 colors we get a 𝑘-clique prob-
lem in a 𝑘-partite graph which is a more tractable search
problem. When we try to pack 42 congruent copies of the
brick into the cube 𝐶 together with 7 unit cubes we get
tiling problem. When we try to pack 42 congruent copies
of the brick into the cube 𝐶 together with 7 unit cubes
and in addition we distinguish the unit cubes among each
other we get yet another version of the tiling problem.

In the first approach the auxiliary graph 𝐺1 had 1008
vertices. The nodes of 𝐺1 were legally colored using 42
colors and we tried to locate a (42)-clique in 𝐺. Note, that
although this graph can be colored with 42 colors it was
just a coincidence. There is no theoretical background to
this fact. Of course the expectation was that 𝐺1 do not
have any (42)-clique.

Let us assume that it is possible to pack 42 congruent
copies of the 1× 2× 4 canonical brick 𝐵 into the 7× 7× 7
cube 𝐶. By Observation 1, we may assume that a brick
appear in the packing such that one of the corners of the
brick coincides with the origin of the coordinate system
and the edges of lengths 1, 2, 4 are along the 1-st, 2-nd,
3-rd coordinate axis. This information can be interpreted
such that there a (42)-clique 𝐶2 in 𝐺1 which has a specific
node. Namely, the vertex 𝑣1 of 𝐺1 that corresponds to the
special corner brick is a node of the of 𝐶2. This suggests to
restrict the graph 𝐺1 to the neighbors of the vertex 𝑣1 to
get a new graph 𝐺2. Then we are looking for a (41)-clique
in 𝐺2. Plainly, the nodes of 𝐺2 are legally colored using 41
colors. This coloring is inherited from the coloring of the
nodes of 𝐺1. Since the graph 𝐺2 has fewer vertices than
𝐺1 (actually 960) and we are looking for a smaller clique in
𝐺2 than in 𝐺1. The new clique problem probably requires
less computational effort because the graph is smaller, and
because we introduced a symmetry breaking to it.

The problem of packing 42 bricks into a bigger cube can
be viewed as a tiling problem. Namely, we try to tile the
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7× 7× 7 cube 𝐶 by 42 copies of the canonical brick and
7 additional copies of a unit cube. Thus we are facing to
a tiling problem using two different types of tiles and the
number of the tiles is given. To ensure that we use 42 bricks
we numerate the small cubes as {1, . . . , 7} and ensure in the
graph that each small unit cube is used once, that is we do
not connect nodes where the unit square is covered by the
same small cube. This tiling problem can also be reduced
to a clique search problem. We denote the corresponding
graph 𝐺3. Tiling problems are more manageable compared
with packing problems as during the search back-tracking
can be anticipated earlier. However, the graph associated
with the tiling in our case has more vertices than the graph
associated with the packing, namely it has 10 465 nodes.
Therefore only computations can reveal which approach is
preferable.

Obviously, in this case we can also fix a brick in the
corner. This version will be the 𝐺4 graph.

In the last clique search equivalent of Gardner’s problem
we construct a graph 𝐺5. In this construction we handle a
mixed tiling problem but we utilize the extra information
that no two distinct unit cube can appear in the same slab.
By Observation 2, this may be assumed. This is done by
not connecting two nodes associated with unit cubes if
those unit cubes lay in the same slab. This graph is the
same size as 𝐺3, as we only delete some edged from it. Also,
we can fix a brick in the corner in this case as well, that
shall be the 𝐺6 graph.

Once again only numerical experiments can guide us in
judging the merits of the possible clique search equivalents
of the problems. Further, the preconditioning methods per-
form differently on the graphs 𝐺1, 𝐺2, 𝐺3, 𝐺4, 𝐺5, 𝐺6 and
this adds an extra layer of difficulty to the numerical work.
We used a computer with AMD EPYC 7643 processors,
C++, and gcc v12.1 with settings -O3 -arch=znver3.

We made all six graphs and performed 𝑘-clique search
on them after preconditioning as described in [12, 13]. The
preconditioning run for 1-2 hours for the bigger graph, and
reduced it by half, namely to around 6 000 nodes for 𝐺3, 𝐺4;
and to around 4 000 for 𝐺5, 𝐺6, that is the graphs where we
allow only one small cube in a slab. For the smaller graphs
(𝐺1, 𝐺2) the preconditioner runs for a couple seconds but
cannot significally reduce the graph. Three of the six graph
could be solved after preconditioning: 𝐺2, 𝐺5, and 𝐺6.

The solution time of 𝐺2 (the original graph with fixed
brick in the corner) was 50 days. The solution of 𝐺5 was a
bit faster, 29 days. Finally, the graph 𝐺6 could be solved
more effectively. The running time was 123 484 seconds,
that is 34 hours. This clearly show us the importance of
the extra information of slabs.

5 Conclusions

We detailed several 𝑘-clique search reformulations of a
certain combinatorial problem in terms of constructing
suitable auxiliary graphs. We do not claim, that these
methods result more efficient practical computations than
other approaches. The point we are trying to make is that
the clique reformulations open up a possibility to use well
tuned clique solvers, including preconditioning, to handle
different combinatorial problems in a unified manner as a
general solver.

The results presented here have interesting consequences
and suggest further research problems. First, and as an-
ticipated, different auxiliary graphs lead to very different
search space sizes. And although the usual concept in our
research is that bigger graphs usually tend to be harder,
that is not always the case. Remarkably, numerical results
indicate that the size of the auxiliary graph alone is not as
important as the type of the reformulation. Namely, the
tiling type auxiliary graphs required less computational
effort for clique search even if they were not the small-
est graphs. Second, there are additional constraints that
can be added to some reformulations while they seemingly
cannot be incorporated into others. An example to such a
constraint is the fact described after the proof of Observa-
tion 1. Namely, that no two distinct uncovered unit cubes
can appear in the same slab in Gardner’s brick packing
problem. That kind of restriction could be incorporated
into the tiling version of reformulation, and possibly not
applicable to the packing reformulation. Taking advantage
of the extra constraint made possible to solve the brick
packing problem in reasonable time.

There are other problems that can be solved using similar
approaches as detailed in the paper. Authors could solve
smaller instances of the Golomb ruler problem or the Salem-
Spencer set problem. The results, that lay outside the scope
of the present paper, obtained with those instances open
up even more interesting considerations.
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