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Abstract
This paper explores how adaptive behaviors can emerge in artifi-
cial agents through neuroevolution in a dynamic 2D ecosystem.
Using the NEAT (NeuroEvolution of Augmenting Topologies)
algorithm, both neural network structure and weights evolved
over time without predefined architectures or behaviors. The
system models two agent types: herbivores and carnivores, that
compete for limited food resources in a simulated environment.
From the beginning it was evident that environment design, in-
put encoding, and reward shaping had a major impact on agent
behavior. Poorly tuned conditions led to exploitation, overfit-
ting, or meaningless patterns. But when the system was carefully
balanced, agents began developing survival strategies such as
movement efficiency, food seeking, and attacking. Herbivores
evolved plant-consumption behaviors, while carnivores built on
this base to prioritize attacks and meat consumption. Some be-
haviors generalized well to larger environments, showing that
agents were not just memorizing patterns. We observed how
NEAT’s speciation and innovation mechanisms were crucial for
maintaining diversity and avoiding premature convergence. At
the same time, challenges like catastrophic forgetting revealed
the limitations of neural networks in long-term skill retention.
Ultimately, this work demonstrates how intelligent, adaptive be-
havior can emerge from simple evolutionary principles and offers
a foundation for future research into co-evolution, agent roles,
and artificial life.
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1 Introduction
This research explores neuroevolution for adaptive agent behav-
iors in a dynamic ecosystem. Agents are controlled by feedfor-
ward neural networks that map sensory inputs to actions [4],
trained by the NEAT algorithm to incrementally evolve the struc-
ture, as first introduced by Stanley and Miikkulainen in their
2002 paper [5]. We ran simulations, evaluated performance by
observing emergent behaviors from environment interaction,
and tracked different metrics across generations.

2 Motivation
As the environment is dynamic and there are no predefined ob-
jectives to optimize, traditional learning methods fall short in
such settings, as they rely on fixed goals or static structures.
Evolutionary algorithms are inherently exploratory and adapt-
able, suitable for such problems [1]. In this simulation, agents
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must sense, decide, and act in a changing world without any
predefined ’correct’ behavior. Neural networks are used as the
core of agents because they can map sensory input to actions,
allowing flexible adaptation. Since the optimal network design
is not known in advance and may need to grow over time, we
implemented NEAT. The ability of agents to change their be-
havior makes them well suited for an open-ended simulation,
where agent complexity is expected to evolve with environmental
challenges. Finally, the goal of this research is to create a stable
simulation, observe the evolutionary process, and investigate
whether an agent-based NEAT framework can produce adaptive
behaviors and equilibrium dynamics between different agent
roles in a shared ecosystem.

3 Methods
3.1 Environment Model
The ecosystem is a discrete 2D grid populated with food re-
sources and agents. Herbivores consume plants, carnivores con-
sume meat, and all agents perceive their surroundings through
a limited sensory range. Inputs include diet type, hunger level,
local 3x3 neighborhood scan for food, neighbors (type and health
level), and direction toward the nearest food source. The outputs
correspond to discrete actions: move (up, down, left, right), eat,
attack, or stay.

3.2 Evolutionary Framework
Agents (creatures) interact with the world and are controlled by
neural networks (genomes) evolved using NEAT. Initial popula-
tions start with minimal structures (fully connected input/output
layers), and complexity increases through structural mutations.
Each tick, each agent receives a snapshot of the world state as
input, to ensure stable input for everyone. Based on that agents
choose actions as softmax output of their neural networks, and
the actions become events that are handled in a deferred manner.
First, the invalid actions are filtered out, then the EventMan-
ager processes all queued events at once sequentially: applying
changes in the world, updating fitness, and health of agents.

The fitness function evolved through experimentation. Early
versions rewarded survival, but later iterations combined survival
time, food consumption, and for carnivores, attack behavior.

3.3 NEAT Mechanisms
Innovation Tracking is the process of tracking structural mu-
tations globally to keep genomes aligned during crossover. A
singleton class assigns a unique ID to each new connection or
node. If a structural change already exists, it reuses the same ID; if
not, it creates a new one. This ensures a consistent identification
of identical innovations in all genomes [5].

NEAT preserves evolutionary innovation by speciation (nich-
ing) [5]. Each generation, evaluated genomes are reassigned to
species based on structural compatibility distance, which is cal-
culated as a weighted sum of the number of disjoint and excess
genes, and weight difference averages between matching genes,
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as shown in the formula below.

𝛿 =
𝑐1𝐸

𝑁
+ 𝑐2𝐷

𝑁
+ 𝑐3 ·𝑊

Existing species are cleared and each genome is compared to
species representatives; if no match is found, a new species is cre-
ated. Representatives are updated every generation to maintain
diversity. Fitness is shared within species (adjusted by species
size) to balance selection pressure. The compatibility threshold
strongly affects stability: low thresholds create many narrow
species, high thresholds create broader but less distinct species,
requiring careful tuning.

To prevent the population from maintaining one dominant
species and limiting the exploration of the algorithm, NEAT uses
adjusted fitness [5]. Instead of assigning raw fitness scores, the
individual’s fitness is adjusted by the number of individuals who
are within its distance delta, given by the following equation:

𝑓 ′𝑖 =
𝑓𝑖∑𝑛

𝑗=1 𝑠ℎ(𝛿 (𝑖, 𝑗))

Evolution is achieved through genetic operators:
Mutation: Weight changes (random reset 5–10% or small

Gaussian perturbation) and structural changes (adding nodes or
edges, toggling connections). Resulting genome is checked for
acyclicity.

Crossover: Offspring inherit aligned genes by innovation
number; matching genes are copied, while disjoint and excess
genes come from the fitter parent (or random if equal). Invalid
offspring are replaced by mutated fitter parents.

Selection: Parent selection uses tournament selection: a sub-
set of individuals (size 5) is sampled and the fittest is chosen.With
3% probability, a random individual is selected to maintain diver-
sity. This setup provides moderate selection pressure - avoiding
premature convergence while keeping implementation simple,
efficient, and robust across different fitness functions.

3.4 Graphical User Interface
The GUI serves to visually track the simulation in real time,
making the evolutionary process observable and interpretable,
as analyzing logs alone could be misleading. It allowed follow-
ing the population changes over generations, spotting emerging
behaviors such as movement patterns or interactions, and under-
stand whether agents are actually evolving. It helps detect issues
such as creatures moving in the same direction or wandering
aimlessly as shown in Figure 1.

Figure 1: GUI close-up

3.5 Implementation Notes
The simulation was implemented in Java with LibGDX [2] for
visualization. NEAT logic included custom classes for genomes,
species management, and innovation tracking. The evolutionary
loop evaluated agents in the world, assigned fitness, reproduced
genomes, and reset the environment for subsequent generations.

4 Results
After every run around 10 percent of the population is saved and
loaded for the next run, with that part of population unchanged
and the rest filled with mutations of it. This is done to speed up
the evolution process. In early runs, we disabled the perception
of other agents to prevent confusion and help them learn basic
eating behavior. Once they consistently moved and consumed
food, perception was turned on to allow them to adapt to a more
complex environment. We also tested this logic on other inputs
such as the food direction vector left agents essentially ‘blind’ to
non-local food. So, during early iterations, we spawned food in
random concentrated areas rather than spreading it widely, to
help them learn to use this vector.

4.1 Herbivore Evolution
Herbivores initially explored aimlessly but gradually developed
stable food-seeking strategies. Over 800 generations, their ac-
tion distribution stabilized, with movement actions dominating
and eating consistently rewarded. In larger environments, agents
prioritized exploration to reach scarcer resources, showing emer-
gent adaptation beyond memorized patterns.

Figure 2: Herbivore fitness

We can see from Fig.2 that the initial fitness highly oscillates,
with great difference in average and maximal fitness, as well
as some very lucky individuals who end up consuming a lot
of food. This is expected to some extent, as when one creature
consumes food, it reduces the available resources for others in
the population.

Figure 3: Average creature lifespan
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Figure 4: Average number of unique tiles visited

Figures 3 and 4 show agents that survive longer naturally
explore more of the environment, as those consuming more food
also visit more unique tiles. Although conditions like uneven food
distribution can influence this effect, it still emerged without
explicit rewards for it. Direct exploration incentives could be
added to drive exploration further.

4.2 Carnivore Adaptation and Catastrophic
Forgetting

Carnivores were evolved by reusing herbivore topologies and
adjusting weights, transferring eating behavior to meat sources.
This transfer worked quickly, but the agents showed catastrophic
forgetting when switched back to herbivore roles, losing previous
behaviors [3]. This showed us that we needed more general
pretraining to make sure that agents were using their role, food
and food vector inputs, and not overfitting to the food type.

4.3 Co-Evolution Dynamics
To try to avoid the problem of forgetting mentioned, we saved
agents of both types that evolved their basic skills independently.
When carnivores were alone we gave them no motivation to
use the attack action, to wire the logic later to herbivores. The
attacking behavior was rewarded only for carnivores, but as
shown below, some role interference was inevitable.

In smaller worlds, herbivores focused on eating, carnivores
split between eating and attacking; in larger worlds, carnivores
prioritized attacking, herbivores balanced movement and eating.

Figure 5: Herbivore action distribution 100x100 world

In the beginning, the actions chosen were randomized, but
Figure 5 shows how herbivores learned to prioritize the eating
action, although initial interference is evident. The usage of stay
and attack actions is low.

Figure 6: Carnivore action distribution 100x100 world

In Fig.6 we can spot how carnivores experience problems in
balancing the eating and attacking action, but the attacking action
slightly dominates after some time.

Figure 7: Herbivore action distribution 200x200 world

Figure 7 displays herbivore behavior, where the action dis-
tribution is more stable and there is a clear evolved balance of
eating and moving actions, which is expected in a larger world.

Figure 8: Carnivore action distribution 200x200 world

Figure 8 displays carnivore behavior in the larger world, where
they were given a greater incentive to attack. From the distribu-
tion, we can see that they indeed attacked more, with the other
actions being balanced out, and the staying action was rarely
chosen.
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Figure 9: Maximum lifespan in the coevolutionary setting

Fitness (as well as the lifespan depicted in Figure 9) fluctuated
in an “arms race” pattern with no dominant winner. This outcome
is expected, as the rise in one role’s performance lowered the
performance of the other. This shows that the system tended to-
ward balance, which aligns with the objective of testing whether
coevolution with NEAT agents could produce equilibrium.

4.4 Species Diversity

Figure 10: Species diversity over generations.

The survival plot of emerging species in Figure 10 shows an
important aspect of the NEAT algorithm. The initial drop means
that a few very successful topologies dominated the population,
but using a lower compatibility threshold prevents the total loss
of diversity. The number of species stabilized after some time
and fluctuated between 10 and 20, while many smaller species
died out quickly.

5 Design Observations
Agent behavior is highly sensitive to design choices in fitness
functions, environment setup, and input representation. Poorly
designed fitness functions can lead to inefficient behaviors, such
as flickering near food, highlighting the exploration–exploitation
trade-off.

Static or predictable resource spawn locations can cause over-
fitting, where agents memorize positions instead of learning
general strategies. Dynamic and unpredictable environments are
necessary to evolve general food-seeking behaviors. However, a
highly unpredictable or unstructured environment can act as a
moving target for agents and hinder learning.

Input scaling can also produce unintended behaviors. Unlim-
ited health input caused agents to idle unnecessarily. Spawning

agents too close initially and awarding them for food consump-
tion led to aimless wandering when neighboring agents died,
because they developed correlation between neighbors and food
resources. These issues demonstrate how neural networks can
pick up patterns by coincidence that hinder generalization.

It is important to note that the metrics do not always show
consistent progress and trends, as the environment is dynamic:
food spots and starting points were shifted each generation. This
randomness caused noise: dips do not always signal that the
agents are getting worse or that peaks indicate real success. We
had to tweak fitness and food spawning, sometimes to push
agents forward, sometimes to stop reward hacking. Many of the
tests went into environment design: food rewards, initial and
maximal health, attack damage, to ensure fairness, and allow
learning.

6 Conclusion and Future Work
This paper shows that it is possible to achieve nature-like behav-
iors from relatively simple principles in dynamic, open-ended
environments without predefined goals, through the process of
neuroevolution. By evolving herbivores and predators separately
and in co-evolution, we showed that evolutionary pressures can
produce adaptive behavior and predator–prey equilibria.

We discovered that with enough careful design and engineer-
ing, almost anything can be modeled: one could simulate real-life
problems, encode relevant domain knowledge, and observe what
trends or solutions emerge through evolution.

This work lays a foundation for future experiments involving
more complex behaviors, survival strategies, and deeper coevo-
lutionary dynamics. Future directions could include refined role
awareness mechanisms, improved memory or learning retention,
and more complex agent inputs and actions, enabling us to push
the boundaries of what these agents can learn over time.
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