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Abstract
Power grid security assessment under the N-1 criterion requires
extensive contingency simulations, which are computationally in-
tensive and costly to label. In this work, we explore the use of active
learning (AL) to train binary classifiers that can accurately predict
the outcome of contingency scenarios using fewer labeled sam-
ples. We evaluate several AL strategies, such as entropy, margin,
and uncertainty sampling against a random baseline. Our results
show that AL methods achieve the same predictive performance
with significantly fewer labels, reducing labeling effort and sim-
ulator runtime. These findings demonstrate the effectiveness of
integrating AL with power system simulators to enable scalable
and efficient N-1 security assessment without sacrificing model
accuracy.
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1 Introduction
Ensuring secure operation of power systems under the N-1 crite-
rion is a cornerstone of grid reliability. The criterion requires that
the system remains within operational limits following the loss of
any single component (e.g., line, transformer, or generator). In prac-
tice, this involves simulating a large number of contingencies and
checking for violations of thermal or voltage constraints. While es-
sential, such simulations are computationally intensive, particularly
when performed on high-fidelity grid models, and their interpre-
tation often requires expert judgment. This creates a bottleneck
for both real-time applications and large-scale scenario analyses,
where scalability and efficiency are important.
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Classical approaches to N-1 assessment rely on exhaustive AC
power flow simulations combined with contingency ranking heuris-
tics such as performance indices (PIs). While useful for screening,
these heuristics may mis-rank contingencies or overlook borderline
cases due to masking effects [3]. Moreover, exhaustive analysis
does not scale well with system size, making it unsuitable for fast
or repeated assessments.

To overcome these challenges, researchers have proposed ma-
chine learning (ML) and deep learning (DL) approaches that ap-
proximate N-1 contingency outcomes directly from operating point
features. One of the earliest contributions in this direction applied
convolutional neural networks (CNNs) to contingency datasets,
showing that deep models could achieve over 99% accuracy in
detecting insecure cases while being more than 200 times faster
than traditional power flow calculations [1]. Building on this, more
recent work explored pooling-ensemble multi-graph learning to de-
sign scalable contingency screening schemes based on steady-state
information, demonstrating improved adaptability for large-scale
systems [2]. These approaches enable fast security screening with-
out solving power flows for every contingency. However, their
reliability hinges on the availability of large labeled datasets cover-
ing all relevant operating points and contingencies. Such datasets
are typically generated by running exhaustive offline N-1 simula-
tions, which is computationally expensive, or require significant
expert effort to label secure versus insecure cases. This dependence
on costly and large-scale data generation remains a major limi-
tation of existing ML-based frameworks for steady-state security
assessment.

To reduce labeling costs, active learning (AL) has recently been
explored in other areas of power systems. For example, authors of
[5] used AL to enhance stability assessment and dominant insta-
bility mode identification, showing that models could be trained
with far fewer labeled samples while maintaining accuracy. Simi-
larly, authors of [4] demonstrated an AL-enhanced digital twin for
day-ahead load forecasting, where the model iteratively refined pre-
dictions by querying only the most uncertain cases. These studies
confirm the potential of AL to reduce expert effort and simulation
cost by strategically selecting informative samples. However, AL
has not yet been applied to N-1 steady-state security assessment,
where the need to cut down on contingency simulations is espe-
cially critical.

In this work, we propose a novel framework for active learning-
driven N-1 security assessment. Our contributions are threefold:

(1) We design a binary classificationmodel that predicts whether
a given contingency is secure or insecure based on steady-
state features.
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(2) We integrate active learning strategies (entropy, margin, and
uncertainty sampling) with the classifier to selectively query
the most informative contingencies for simulation, reducing
the number of labels required.

(3) We demonstrate through a case study that our approach
achieves the same predictive accuracy as fully supervised
baselines while reducing simulation cost and labeling effort
by up to 40–50%.

This work provides the first evidence that active learning can be
directly leveraged for N-1 security assessment, offering a scalable
and label-efficient alternative to exhaustive simulation or purely
supervised ML approaches.

Although machine-learning and deep-learning approaches are
increasingly being used in smart-grid applications, most of them
rely on fully supervised training with large labelled datasets. Active
learning (AL), which iteratively queries only the most informative
samples, has been used to reduce labelling costs in related tasks
such as stability assessment and energy-theft detection, but to date
it has not been systematically applied to N-1 steady-state security
assessment. As a result, exhaustive simulations remain the norm for
contingency screening, even though they are expensive and often
unnecessary. By addressing this gap, our work demonstrates that in-
formative sampling can achieve comparable predictive performance
while substantially lowering simulation overhead.

2 Methodology
The dataset for training and evaluating the proposed framework
was generated using a digital twin of the transmission network,
where time-series power flow simulations were performed for both
base case and N-1 contingency conditions. At each timestamp, load
and generation profiles (including renewables) were assigned, and
a base-case power flow provided steady-state indicators such as
maximum line loading, minimum and maximum bus voltages, and
active power injections from loads and generators. The N-1 criterion
was then applied by sequentially removing each line, transformer,
or generator and re-running the power flow, with the worst-case
line loading and bus voltages recorded. An operating point was
labeled secure if neither the base case nor any contingency violated
standard limits (line loading > 100%, bus voltages outside [0.90,
1.10] p.u.), and insecure otherwise. Non-convergent cases were also
marked insecure. The resulting dataset consists of timestamped op-
erating states with base-case and worst-case contingency features,
each paired with a binary security label, providing the foundation
for classifier training and active learning evaluation.

Table 1: Dataset description

Attribute Value

Total contingency cases 8 769
Secure / Insecure 51.28% / 48.72%
Features Line loadings, Bus voltages,

Generator and load injections

We trained a Random Forest classifier with an initial labeled
set of 100 samples. Active learning proceeded in batches: at each

iteration a batch of 50 additional samples was selected using one of
the strategies described below. We ran 20 such iterations, yielding
roughly 1 100 labeled samples per run (100 initial labels plus 20 × 50
additional samples).

• Random: randomly selected samples (baseline).
• Entropy: selects samples with the highest predictive en-
tropy.

• Margin: selects samples with the smallest difference be-
tween the top two predicted class probabilities.

• Uncertainty: selects samples on which the classifier is most
uncertain, measured by one minus the maximum class prob-
ability.

2.1 Evaluation
We evaluate after each AL iteration on a held-out validation set.
The initial labeled pool has 𝑛0=100 samples; each iteration adds a
batch of 𝑏=50 labels for 𝑇=20 iterations (total 𝑛0+𝑇𝑏). Results are
reported as average over 𝑅 = 3 random seeds.

2.2 Metrics
Besides Accuracy and ROC AUC, we use two label-efficiency met-
rics.

Time-to-Target (TTT).. For a threshold 𝜏 ,

TTT𝜏 = min{𝑛 : Acc(𝑛) ≥ 𝜏 }.
We also track cumulative simulator runtime required to obtain

labels.

3 Results
We first analyze learning curves. As shown in Fig. 1 and Fig. 2,
all active learning strategies reach target performance with sub-
stantially fewer labels than the random baseline. Figure 1 reports
accuracy as a function of labeled samples, while Fig. 2 shows the
corresponding ROC AUC.

Figure 1: Accuracy vs. total labeled samples (mean across
runs).
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Figure 2: ROC AUC vs. total labeled samples (mean across
runs).

Table 2 summarizes key performance indicators (KPIs) at con-
vergence and for predefined accuracy thresholds.

Table 2: Summary of KPIs across strategies

Strategy Final
Accuracy

Final
AUC

TTT@0.90 Sim. Time
(s)

Random 0.91 0.973 450 2400
Entropy 0.92 0.982 250 4300
Margin 0.92 0.981 250 3600
Uncertainty 0.92 0.983 250 2150

Next, we compare label efficiency and simulation cost. Figure 3
and Fig. 4 plot time-to-target (TTT) for accuracy thresholds 0.90
and 0.92, respectively, while Fig. 5 reports the cumulative simulator
runtime. Across thresholds, entropy/margin reach the target after
roughly 250 labels, whereas random sampling requires about 450;
uncertainty sampling matches their label efficiency and achieves
the lowest runtime.

Figure 3: TTT (accuracy ≥ 0.90): labeled samples required to
reach the target.

Figure 4: TTT (accuracy ≥ 0.92): labeled samples required to
reach the target.

Figure 5: Cumulative simulator runtime across strategies
(final mean).

The experiments confirm that all active learning strategies sub-
stantially outperform random sampling in terms of label efficiency
and simulator cost. In particular, entropy and margin sampling
reached an accuracy of 0.90 after roughly 250 labeled samples,
whereas random sampling required about 450 samples—a reduction
of almost 45% in labeling effort. Uncertainty sampling achieved sim-
ilar label efficiency but offered the lowest simulator runtime (about
2 150 s compared to about 4 300 s for entropy and about 3 600 s for
margin), making it the most cost-effective strategy. Random sam-
pling was consistently less efficient, needing nearly twice as many
labels to meet the same accuracy thresholds.

Despite the reduced number of simulator calls, all active learning
methods achieved a final validation accuracy of approximately 0.92
and an AUC around 0.98, close to the offline baselines obtained by
training on the fully labeled dataset. These findings indicate that in-
tegrating active learning with a digital twin simulator can preserve
predictive performance while significantly reducing simulation
cost.
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4 Conclusion
This paper demonstrates that active learning is a viable strategy
for reducing simulation costs in power-grid security assessment.
By selectively querying informative contingencies, the number of
simulator calls can be reduced by roughly 40–50 % without sacrific-
ing predictive accuracy. Fewer simulator calls translate into shorter
training times and lower computational and memory requirements,
which are particularly important for real-time or resource-constrained
applications.Moreover, integratingALwithin a digital-twin pipeline
enables a feedback loop in which the classifier continuously refines
itself using only the most informative contingencies. These findings
suggest that exhaustive N-1 simulations are not always necessary
for reliable security assessment, paving the way for more scalable
and efficient grid-analysis tools.

The present study focuses on a single test system and a Random
Forest classifier. In future work we plan to evaluate the proposed
framework on larger and more diverse grid topologies (e.g., IEEE
39-bus, 118-bus or national transmission networks) and under vary-
ing operating conditions. Another direction is to explore more
advanced models such as gradient-boosting machines, deep neural
networks or graph neural networks, which may capture complex
relationships among grid variables. We also intend to investigate
alternative sampling strategies—including diversity-based selec-
tion, query-by-committee and Bayesian active learning—to further
improve label efficiency. Finally, extending the methodology to

multi-contingency (N-𝑘) and dynamic security assessments (e.g.,
transient stability) will broaden its applicability in future smart-grid
deployments.
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