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ABSTRACT
Predictive maintenance is increasingly central to manufacturing,

where the goals are to reduce unplanned downtime and extend as-

set lifetimes. Conventional models often rely on correlations that

insufficiently capture temporal dynamics and causal dependen-

cies underlying failures. This study proposes a causality-informed

feature-engineering pipeline that combines cross-correlation-

derived lags with VARLiNGAM to construct lag-aware features

from multivariate sensor streams, and evaluates it against stan-

dard time-series models using a time-aware split. Three machine-

learning models—Random Forest, XGBoost, and Gradient Boost-

ing—were trained and assessed by F1-score (rather than accu-

racy) on a single-machine subset of the Microsoft Azure Pre-

dictive Maintenance dataset (8,708 samples; 26 failures, ≈0.3%
prevalence). XGBoost trained on raw temporal features achieved

F1 ≈ 0.94 for longer prediction horizons (≥10 h) under time-

series–aware cross-validation, with performance declining at

shorter horizons as temporal context diminishes. In this setting,

causality-informed features did not improve results over the raw-

feature baseline. These findings indicate that, with data from

a single machine, causal discovery is susceptible to overfitting

and may suppress informative temporal patterns; broader, multi-

machine datasets are likely required for causality-enhanced rep-

resentations to yield consistent gains.
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1 INTRODUCTION
The rising complexity and interconnectivity of industrial systems

have accelerated the need for intelligent maintenance strategies

that move beyond reactive and preventive paradigms. Predictive

maintenance, driven by sensor data and machine learning, has

emerged as a transformative approach to minimize unplanned

downtime and optimize asset life cycles [1]. Traditional predictive

maintenance models, however, often rely on statistical correla-

tions that fail to capture the directionality and temporal dynamics

inherent in real-world system failures [6].
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To address these limitations, this study proposes a causality-

informed framework for predictive maintenance that leverages

temporal causal discovery techniques, such as Vector Autore-

gressive LiNGAM (VARLiNGAM), to engineer predictive features

from multivariate sensor data. Our approach integrates cross-

correlation analysis and lag-optimized causal graphs to detect

failure precursors and identify their optimal predictive windows.

We hypothesize that the observed lack of competitive advan-

tage for causality-informed models, especially when applied to

data from a single machine, arises from the limited operational

diversity and failure variability. This limitation may cause models

to overfit to machine-specific correlations and exclude informa-

tive temporal features, thereby hindering their generalizability.

Testing this hypothesis through multi-machine datasets will be a

key focus of future work.

2 RELATEDWORK
Causality in time series analysis has become increasingly critical

in predictive maintenance, particularly within industrial and

manufacturing domains, where early failure detection plays a

pivotal role in minimizing operational disruptions and financial

losses [5]. Classical statistical models have been widely used

to infer causal relationships between sensor measurements and

machine states, yet they often fail to capture complex temporal

dynamics and the nonlinear relationships inherent in real-world

system failures.

Recent studies have explored advanced causal inference tech-

niques to enhance fault prediction. Wang S. et al. proposed a

framework for fault diagnosis that integrates spatiotemporal

dependencies, demonstrating improved predictive accuracy in

chemical manufacturing systems [9]. While their work advances

reliability in industrial diagnostics, it lacks the flexibility to gen-

eralize across diverse application domains. On the other hand,

Cui et al. introduced a deep learning framework that enhances

predictive maintenance by integrating causal reasoning and long-

sequence multivariate time-series data, significantly improving

predictive performance and interpretability [3]. Despite this, the

challenge of automating temporal feature engineering and seam-

lessly deploying models across different domains remains.

Yang X. et al. contributed to the growing literature on data-

driven causal analysis by incorporating dynamic latent variables

and probabilistic graphical models into causal modeling frame-

works [10]. However, these models have yet to fully address the

temporal feature extraction required for scalable deployment

in real-world predictive maintenance applications. Furthermore,

more recent work by Wang Q. et al. introduced a Causal Graph
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Convolution Module that adapts causal discovery within time-

series prediction [8], but their approach is still dependent on

complex model adjustments across domains.

In this study, we propose a novel framework that integrates

lagged correlation with causal analysis techniques to detect fail-

ure precursors and quantify their lead times. This framework au-

tomates temporal feature engineering and is designed for diverse

real-world applications acrossmanufacturing settings, without re-

quiring extensive architectural modifications. The automation of

temporal feature engineering and its seamless deployment across

comparable manufacturing environments remains a significant

challenge, and extending generalization beyond this domain is

left for future work.

3 EXPERIMENT
Our experimental methodology followed a sequential four-stage

process to construct and validate a robust failure prediction

model, as shown in Figure 1. The first stage involved performing a

cross-correlation analysis between each sensor’s time-series data

and the target failure events to determine the optimal predictive

time lag, which guided the subsequent steps. In the second stage,

the identified optimal lag was used to parameterize a Vector Au-

toregressive LiNGAM (VARLiNGAM) model, which generated

a directed acyclic graph (DAG) representing the causal relation-

ships and effect strengths between sensor variables and the failure

event. The third stage focused on creating a causality-informed

feature vector by integrating standard statistical metrics from

rolling time windows along with advanced features informed by

the causal analysis, using the correlation strengths and causal

effect strengths derived from the VARLiNGAM model to select

and weight features based on their respective optimal and causal

lags. Finally, in the fourth stage, the enriched feature set was fed

into a machine learning pipeline, employing a time-based data

split to prevent look-ahead bias, and training several classifica-

tion models, including Random Forest, XGBoost, and Gradient

Boosting, to assess the effectiveness of the causality-informed

approach for predictive maintenance. This integrated approach

enhances the predictive capabilities of machine learning mod-

els, offering a robust solution for failure prediction in industrial

settings.

Figure 1: proposed framework

Figure 2: Cross correlation analysis

3.1 Dataset and Preprocessing
We used the Microsoft Azure Predictive Maintenance Dataset

[2], which provides hourly telemetry (voltage, rotation, pressure,

vibration) plus maintenance records, failure events, incident re-

ports, and machine metadata for 100 machines over 12 months in

2015 (over 800k hourly summaries and thousands of non-failure

error entries). For this study, we restricted the analysis tomachine

ID 98; after cleaning and merging the sources, we constructed

a causality-informed feature vector and standardized features

across modalities. Cross-correlation suggested predictive lags of

1–24 hours, so we derived lagged/statistical features from six pri-

mary variables (voltage, rotation, pressure, vibration, age, error

type). The final dataset comprised 8,708 samples with 26 failures

(≈0.3% ), indicating strong class imbalance [7, 2]. The feature

set comprised 150 causality-informed features and 36 features

without causal information.

3.2 Cross-correlation Analysis
Cross-correlation analysis examines the correlation between two

time series as a function of the time lag applied to one of them

[11][12]. Unlike simple correlation, which measures linear rela-

tionships at a single point in time, cross-correlation reveals how

variables relate across different time delays, making it particu-

larly valuable for identifying lead-lag relationships and temporal

dependencies. The initial phase of our experimental framework

involved a cross-correlation analysis to empirically determine

the predictive temporal relationships between sensor signals and

equipment failures. For each sensor, we computed the Pearson

correlation coefficient between its time series and the binary

failure time series across a range of discrete time lags. This pro-

cedure was executed by systematically shifting the failure signal

backward in time, which allowed for the correlation of sensor

readings at a given time t with failure events at a future time t +

lag. The optimal predictive lag for each sensor was then identified

as the time lag that yielded the maximum absolute correlation

value. This analysis is critical as it quantifies the time window in

which each sensor’s data is most informative for forecasting an

impending failure, thereby providing an empirical foundation for

the subsequent causal discovery and feature engineering stages.

In the cross-correlation plot shown in Figure 2, the red star

annotated on each sensor’s curve denotes the optimal predictive

lag—20 hours for Pressure, 14 hours for Vibration, and so forth.

This marker identifies the specific time lag, measured in hours,

at which the sensor’s signal exhibits the highest absolute Pear-

son correlation with the future failure event. Consequently, the

red star highlights the most influential temporal offset for each

variable, effectively quantifying the sensor’s most informative

predictive window within the 24-hour forecasting horizon.
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3.3 Causal Graph Construction
To elucidate the causal interdependencies between sensor signals

and equipment failures, a causal graph was constructed using

VARLiNGAM. This methodology first employs a Vector Autore-

gression (VAR) model to capture the linear, time-lagged relation-

ships among the multivariate sensor time series. The optimal

lag for the VAR model was adaptively informed by the preced-

ing cross-correlation analysis to focus on the most predictive

temporal window. Following the VAR estimation, the LiNGAM

algorithm is applied to the resulting model residuals, or innova-

tions. By exploiting the non-Gaussian nature of these innova-

tions, LiNGAM uniquely identifies the contemporaneous causal

structure—the instantaneous effects between variables—and de-

termines the direction of influence, thereby producing a directed

acyclic graph (DAG). The final output is a set of adjacency ma-

trices representing the causal graph, where each non-zero entry

quantifies the strength and direction of a causal link from one

variable to another at a specific time lag. Our approach constructs

a directed causal graph from time-series sensor data using the

following steps:

(1) Data Sorting and Integrity: Chronologically sort sensor

data, verifying integrity and noting irregular intervals.

(2) Variable Definition: Define variables which are vibra-

tion, rotation, pressure, voltage, and a binary failure indi-

cator as the target node.

(3) CausalModel Setup:Configure a VARLiNGAM [4]model

with a specified lag order and BIC-based pruning.

(4) Model Fitting: Fit the model to the prepared data matrix,

applying regularization—by adding small Gaussian noise

(e.g., 10
−6

)—when numerical instability arises during VAR-

LiNGAM causal graph construction due to ill-conditioned

matrices.

(5) Adjacency Extraction: Extract adjacency matrices to

identify directed edges, effect strengths, and correspond-

ing lags.

(6) Graph Assembly: Assemble the causal graph, catego-

rizing edges by their relation to the target and between

sensor variables.

This workflow ensures that temporal ordering is respected

and that detected causal links most likely represent meaningful

relationships for predictive maintenance and further analytical

investigations. Figure 3 presents the causal graph generated by

the VARLiNGAM algorithm, illustrating the network of causal

relationships between sensor telemetry (volt, pressure, vibration,

rotate), machine properties (age), and the target failure event. In

this graph, nodes represent the variables, and the directed edges

(arrows) signify the direction of causality, with edge thickness

corresponding to the strength of the effect. The labels on each

edge quantify the causal strength and the time delay (lag) in hours.

The analysis reveals a complex web of interactions, prominently

highlighting that machine age is themost significant causal driver

of failure, with an exceptionally strong effect strength at a lag of

6 hours. Other notable, though weaker, causal pathways are also

identified, such as the influence of rotate on failure. This causal

structure provides critical insights into the system’s dynamics,

identifying the key variables and time-delayed interactions that

precede a failure event.

3.4 Causality-Informed Feature Engineering
We prepared the data by building a causality-informed feature vec-
tor grounded in the paper’s causal graph and a temporal causality

Figure 3: Causal Graph

analysis that selects per-sensor optimal prediction windows. Us-

ing a sliding feature window (typically 72 h), samples are formed

from historical data only to avoid leakage. Feature construction

proceeds in four stages: (1) basic statistics (mean, standard devi-

ation, min/max, latest/earliest within the window); (2) causality-
aligned temporal features computed at the optimal lags iden-

tified by causal analysis; (3) dynamics via trend slopes (linear

regression), rolling volatility (standard deviation), and rates of

change; and (4) cross-feature terms implied by the causal graph

(e.g., voltage/rotation ratios and pressure–vibration correlations).

Targets are defined for multiple horizons (1, 6, 12, and 24 h ahead)

to enable early warnings at different lead times. The resulting

dataset contains 150 features that integrate causal dependencies

with temporal patterns.

3.5 Machine Learning Models
Three classification algorithms, each configured with default

hyperparameters, were evaluated using time-based data parti-

tioning to mitigate the risk of data leakage.

• Random Forest (RF): Ensemble method with 200 estima-

tors, maximum depth of 15, and balanced class weights

• XGBoost (XGB): Gradient boosting with 200 estimators,

learning rate of 0.1, and automatic scale balancing

• Gradient Boosting (GB): Scikit-learn implementation

with 200 estimators and 0.8 subsample ratio

Model performance was assessed using F1 Score metric appro-

priate for imbalanced classification:

• F1-Score: Harmonic mean of precision and recall

A time-series–aware data partitioning strategy was imple-

mented using scikit-learn’s TimeSeriesSplit, which generates folds
in chronological order by progressively expanding the training

set with earlier observations and reserving subsequent periods

for testing. This procedure ensures that all training data tem-

porally precedes the corresponding test data. To approximate

stratification and preserve class balance between rare failure and

more frequent non-failure events, the folds were constructed

to proportionally distribute failure cases across splits without

introducing randomization. This design maintains the tempo-

ral integrity of the sensor data while supporting reliable model

evaluation.

4 RESULTS AND DISCUSSION
Figure 4 presents the comprehensive F1-score evaluation of all

three models, while Figure 5 provides a comparative analysis
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Figure 4: F1-score evaluated over a 20-hour prediction hori-
zon

Figure 5: The XGBoost F1-score across a 20-hour prediction
horizon, evaluated with and without a causality-informed
feature vector

of the XGBoost model with and without the causality-informed

feature vector. Standard time-series models, particularly those

trained on raw temporal data, consistently outperform causality-

informed approaches in predictive maintenance tasks, especially

at extended prediction horizons. XGBoost, for instance, achieves

F1 scores exceeding 94% for horizons beyond 10 hours, though

performance declines with shorter windows due to reduced tem-

poral context. In contrast, causality-informed models offer no

competitive advantage—primarily due to the limitations of causal

discovery conducted on data from a single machine. This nar-

row scope lacks the operational diversity and failure variability

needed to infer generalizable causal structures, resulting in over-

fitting to machine-specific correlations and the exclusion of in-

formative temporal features. These findings highlight the critical

need for multi-machine datasets when applying causal methods,

ensuring that inferred relationships reflect true causality rather

than artifacts of constrained data. In addition, Longer prediction

horizons (e.g., 20 hours) afford models access to extended histor-

ical windows (e.g., 72 hours), enhancing their ability to detect

subtle patterns and causal signals. In contrast, short horizons

(e.g., 1 hour) offer limited temporal context, increasing suscepti-

bility to noise and overfitting. Causality-informed features such

as optimal lag and causal strength are inherently better suited to

longer windows, where failure patterns emerge gradually rather

than abruptly.

5 FUTUREWORKS
While this study establishes a robust, domain-agnostic frame-

work for failure prediction, future work will focus on enhancing

its transparency and causal reasoning capabilities. The integra-

tion of Explainable Artificial Intelligence (XAI) methods, such as

SHAP or LIME, will provide transparent insights into the predic-

tive models’ decision-making processes, fostering trust among

users and enabling more informed maintenance decisions. Ad-

ditionally, investigating counterfactual analysis will allow for

exploring ’what-if’ scenarios to better understand the causal im-

pacts of various factors on failure predictions. Alongside these

enhancements, we will address the observed limitations of ap-

plying causality-informed models to data from a single machine.

Specifically, we hypothesize that the lack of competitive advan-

tage stems from the limited operational diversity and failure

variability of a single-machine dataset, leading to overfitting. Fu-

ture work will validate this hypothesis by expanding the dataset

to include multiple machines, ensuring more generalizable in-

sights into causal relationships and improving the robustness of

predictive models.
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