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Abstract
The Self encompasses many aspects, such as the Social Self.

Identifying them in text is relevant for many purposes, includ-

ing mental-health research. As part of a larger project aimed

at automatically detecting Self-aspects in written language, in

this study we annotate and employ a dataset of diary entries to

classify the presence or absence of Social Self. We train three

classifiers—Support Vector Machine (SVM), Naïve Bayes, and

Logistic Regression—on either learned or predefined features.

The best-performing model is the SVM trained on predefined

LIWC features based on a previous study. We further apply fea-

ture importance methods, and examine which features make the

biggest contribution to the classification models. The most infor-

mative feature across models trained on learned features is the

word “we”, while the LIWC category “social referents” emerges

as the most important feature for models trained on predefined

features.
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1 Introduction
A central aspect of human experience, the Self is a complex, multi-

aspect phenomenon [3]. Its aspects—encompassing, for example,

personal narratives [18] and social interactions [2]—correlate

with other relevant constructs, such as mental-health conditions

[17]. While the various Self-aspects reflect in the individual’s

language [14], Natural Language Processing (NLP) studies rarely

explore them and employ them in-depth.

This work is part of a larger project aimed at developing mod-

els to automatically identify Self-aspects in text, with applications

inmental-health-research and empirical phenomenology [5]. Due

to the sensitive nature of the domains of application, we attempt

an approach that allows both interpretability and ground-truth

basis, opting for classical machine learning (ML) models. In this

study, we focus on one Self-aspect: the Social Self (SS), defined

as the Self as it is shaped and/or perceived when in an interaction
or relationship of sorts with other people or entities to whom we
attribute qualities of inner life [4]. We aim to investigate how this

is represented in diary entries and whether these representations

can be reliably identified using machine learning. Additionally,

we explore which linguistic features are most predictive of these

aspects. Identifying SS in text is valuable, as, e.g., disturbances

in the SS are closely linked to mental health conditions [7]. This
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project involves labelling—with a mixed approach involving hu-

man annotators and large language models (LLMs)—diary entry

instances as binary (representing or not) SS, with the purpose of

investigating the correlation between SS and textual features. We

train and compare three classifiers (i.e., Support Vector Machine

(SVM), Naïve Bayes (NB), and Logistic Regression (LR)) to predict

SS using either 1) learned features (i.e., TF-IDF unigrams and

bigrams) or 2) predefined features (i.e., Linguistic Inquiry and

Word Count (LIWC; [1]) lexicon categories (see [4]). We use the

mentioned classifiers instead of LLMs (e.g., GPT-4) because our

focus is on employing interpretable features and understanding

their contribution to predictions—an aspect less directly accessi-

ble in generative models. We conduct feature importance analysis

to explore these contributions further. The code is available at

https://github.com/jayacaporusso/SELFtext upon request.

2 Related Work
Studies that address the correlation between text and the traits

and states of the text’s author often utilise the Linguistic Inquiry

and Word Count (LIWC), a text analysis software developed to

analyse linguistic and psychosocial constructs connected to vari-

ous textual aspects [1] (e.g., [9]). Various studies have found Self

states to be associated with linguistic features, e.g., depression

with first-person singular pronouns [15]. This has been employed

in classification tasks (e.g., [6]). In a previous study, after labelling

a dataset with a mixed approach employing human annotation

and LLMs, we analysed which LIWC-22 features characterise

Reddit posts including Self as an Agent, Bodily Self, and SS [4].

Specifically, we showed that the presence of SS is correlated

with LIWC categories including, among the others, emotion and

time related terms. In contrast, the absence of SS is correlated

with, e.g., technology and negative emotions. In this work, we em-

ploy this knowledge to build SS classifiers on predefined features

and compare them with classifiers trained on learned features.

3 Research Questions
In this study, we aim to address the following main research

questions (RQs). RQ1: How does a SS classifier trained on pre-

defined features perform compared to a SS classifier trained on

learned features? RQ2: Among the algorithms employed, which

one performs better for our task? RQ3: Which features are more

relevant for the classification of SS?

3.1 Labelling
In our study, we use a publicly available dataset in English [11]

comprising 1,473 text samples (sub-entries; average length: 507.6

characters, 100.6 words) from 500 personal journal entries (500

anonymous subjects). We augment the dataset with binary labels

for SS, as following addressed.

For labelling, we employ a mixed approach (see [4]) that com-

bines human annotation with the large language model (LLM)
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gemma2 [16]. The instructions for manual annotation are pro-

vided in the Appendix A. Two human annotators label the first

105 instances of the dataset. This is needed to calculate inter-

annotator agreement with the LLM annotations. We instruct

gemma2 to label the data three times, providing three different

personalisations (see [10]): expert in phenomenology, cognitive

psychology, or social psychology. Additionally, we provide them

with definitions of SS, instructions to annotate it, examples of a

text instance where it is present, a text instance where it is absent,

and explanations of why this is so. These can be extracted from

the instructions for manual annotation. Each gemma2 model

performs a one-shot, binary classification for each self-aspect.

We calculate majority voting with the resulting labels and com-

pute the inter-annotator agreement between each pair among the

human and the LLM annotators by calculating Cohen’s Kappa

coefficient. This results in Cohen’s Kappa coefficients of 0.80

(human annotators), 0.89 (first annotator vs. gemma2), and 0.84

(second annotator vs. gemma2). In the further steps, we use the

majority voting labels. The class balance (calculated on the ma-

jority voting) is 50.3% (SS present) vs 49.7% (SS not present).

4 Classification
The text is preprocessed, converting it to lowercase and remov-

ing punctuation and extra whitespace. We extract learned and

predefined features. We then train three classifiers for each set

of features: an SVM, a NB, and a LR model.

4.1 Feature Engineering
Weare interested in comparing the performance ofmodels trained

on learned vs pre-defined features. In this study, we choose to

employ TF-IDF calculated on unigrams and bigrams as learned

features, and the LIWC features identified as being related to the

presence or absence of SS in Caporusso et al. [4].

4.1.1 Learned Features. To extract learned features, we employ

TfidfVectorizer, applying TF-IDF weighting to unigrams and bi-

grams. Restricting the representation to unigrams and bigrams, a

common choice in exploratory text classification, efficiently dis-

plays feature importance, balancing interpretability and compu-

tational efficiency. We limit the feature space to the 1000 n-grams

that, based on their TF-IDF scores, are the most informative. This

ensures computational efficiency. In this process, we choose not

to exclude stopping words. Indeed, for the purpose of our study,

they do not merely constitute noise but might play a key role in

distinguishing text instances reporting on SS.

4.1.2 Predefined Features. We analyse the presence of all the

LIWC-22 [1] categories and subcategories, and subsequently only

considered the LIWC features of interest. Specifically, as prede-

fined features, we employ the LIWC features that Caporusso et al.

[4] identified as being related to the presence and absence of SS

(see 2), for example authenticity, social referents, and the pronoun
I. For each of them, LIWC-22 provides scores relative to the text

length. All LIWC features were standardised using Z-score nor-

malisation to ensure comparability across different feature scales.

This is particularly important for models like SVM and LR, which

are sensitive to feature magnitudes. Missing values (NaNs) are

handled using mean imputation.

4.2 Models
Themodels are trained and evaluated using 10-fold cross-validation

to assess their performance. Specifically, we train three models

on the learned features and three models on the predefined fea-

tures. The models are of three different kinds: SVM, NB, and

LR, all commonly used in text classification tasks. We employ

default hyperparameters. For the SVM, we use Linear kernel. For

LR, we apply L2 regularisation, which adds a penalty term to

the model’s objective function, minimising overfitting. For NB,

MultinomialNB was used for learned features, while GaussianNB

was used for predefined features, which consist of continuous nu-

merical values derived from linguistic analysis. MultinomialNB

assumes that features represent discrete frequency counts, while

GaussianNB assumes that feature distributions follow a normal

distribution, making it appropriate for continuous data.

5 Evaluation
Similarly to the training process, the models are evaluated using

10-fold cross-validation. All the models perform reasonably well,

with the SVM model trained on predefined features outperform-

ing them all (RQ1 and RQ2). The metrics (precision, recall, and

F1-score: mean and STD) across folds are reported in Table 1.

They match the macro average scores. The confusion matrices

for each model are presented in Figures 3 and 4 in the Appendix

B. These highlight that models trained on predefined features

generally perform better at distinguishing between classes, with

the SVM and LR models achieving higher accuracy for both Class

0 and Class 1. However, NB trained on predefined features strug-

gles with a higher rate of false positives for Class 0. The models

trained on learned features have slightly lower performance, with

higher misclassification rates for Class 1 predictions. After per-

forming a Friedman test across folds (statistic = 44.26, p-value =

0.00), we find a statistically significant difference in model per-

formances. We therefore conduct Wilcoxon signed-rank tests

with Bonferroni correction to identify significant pairwise dif-

ferences between models. LR with learned features performed

significantly better than NB with learned features (p = 0.03); SVM

with predefined features outperforms NBwith learned features (p

= 0.03); LR with predefined features outperforms NB with learned

features (p = 0.03); SVMwith predefined features performs signifi-

cantly better than NB with predefined features (p = 0.03); LR with

predefined features outperforms NB with predefined features (p

= 0.03). The results are displayed in Figure 5 in the Appendix B.

Table 1: Evaluation Metrics (Mean and STD)

6 Feature Importance
We employ different feature importance methods tailored to each

model’s learning mechanism to ensure that feature rankings are

meaningful and aligned with the way each algorithm processes

data. For the SVM models, we choose Linear SVM Coefficients

because they directly represent feature importance in the deci-

sion boundary and are computationally efficient to extract. This

method is fast and directly interpretable without requiring addi-

tional computations, but it does not capture feature interactions
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or non-linearity. For the NB models, we choose Permutation Im-

portance. NB does not have meaningful coefficients, and this

method provides a model-agnostic way to assess how each fea-

ture affects predictions. This method allows the interpretation

of feature contributions without relying on the model’s inter-

nal parameters, but it is computationally expensive and can be

sensitive to correlated features. For the LR models, we choose

SHAP (SHapley Additive exPlanations [12]) Values, because they

provide both global and instance-level feature attributions while

considering feature interactions, making them more informative

than raw coefficients. SHAP accounts for feature dependencies

and offers a nuanced interpretation of how features contribute to

individual predictions, but its computations can be slow and the

results depend on the reference distribution used. Using SHAP

for the SVM would be unnecessary because it would give similar

results as the coefficients but less directly and with added com-

putational cost, while SHAP’s dependency assumptions conflict

with NB’s independence assumption. The contribution of each

feature to the classification decision is indicated with a feature

importance score. These are computed differently depending on

the method: in Linear SVMCoefficients, they are derived from the

absolute magnitude of the learned weights; in Permutation Im-

portance, they are measured by assessing the decrease in model

performancewhen a feature’s values are randomly shuffled; while

in SHAP, they quantify the contribution of each feature to the

predicted classification probability by distributing the model’s

output among the input features.

6.1 SVM: Linear SVM Coefficients
For SVM, feature importance is determined using Linear SVM

Coefficients. This method is chosen because linear SVM explic-

itly learns a set of coefficients as part of its optimisation process,

making feature importance inherently interpretable. Addition-

ally, since the SVM model is optimised to find the maximum

margin, features with the largest coefficients contribute the most

to defining this separation, allowing for a clear ranking of feature

relevance. The resulting importance scores are based on the ab-

solute magnitude of the learned coefficients, and like them, they

can be any real value. While the importance scores’ scale depends

on the range of the input features, higher numbers indicate a

stronger influence on classification. The top-3 features for the

SVMmodels are family, we, and with (TF-IDF) and social referents,
I, and personal pronouns (LIWC) (RQ3).

6.2 Naïve Bayes: Permutation Importance
For NB, we choose Permutation Importance because it provides a

robust way to assess feature significance in probabilistic models

that do not generate explicit importance scores. By quantifying

the dependence of the model’s predictions on each feature, Per-

mutation Importance allows for an intuitive understanding of

which features are most influential in the NB classification pro-

cess. The scores produced are relative, and their scale depends on

the model’s performance metric; a larger value indicates that the

feature has a greater impact on classification accuracy. The top-3

features for the NB models are us, birthday, and her (TF-IDF) and
social referents, social, and she/he (LIWC) (RQ3).

6.3 Logistic Regression: SHAP Values
LR calculates the probability of a given outcome using a linear

combination of input features, but SHAP offers a more granu-

lar and interpretable way of explaining these predictions. This

method is chosen because it provides a comprehensive, intuitive,

and theoretically grounded measure of feature importance, mak-

ing it well-suited for interpreting the decision-making process of

a probabilistic model like LR. In this study, we reduce the SHAP

computation sample size from 50 to 20 to improve efficiency

while maintaining representative feature importance insights.

SHAP scores are measured in the same scale as the model’s out-

put and sum to the difference between the model’s output and

the expected output across all features. They can be positive

(probability of classification increased) or negative (probability

of classification decreased). Their magnitude reflects the strength

of the feature’s influence on the classification decision. The top-3

features for the SVM models are with, we, and my (TF-IDF) and

social referents, Social, and I (LIWC) (RQ3).

6.4 Overall feature importance
To determine the top-20most important features across all models

trained on learned features and across all models trained on

predefined features, we aggregate the feature importance scores

from each model and sum them across all models. This is done

to show which features are consistently influential regardless

of the model; however, due to differences in how each method

computes importance, the aggregated scores should be viewed

as indicative rather than absolute measures of feature relevance.

The top-10 features for the models trained on learned features

are displayed in Figure 1, while those for the models trained on

predefined features in Figure 2 (RQ3). Additionally, we identify

unique features for each model, defined as those that appear in

the top-10 for a specific model but not in others. Following, we

report those referring to models trained on learned features.

• SVM:my, team, she, our, he, we, with, friend, with my, their.
• Naïve Bayes: team, they are, he was, us, birthday, she was,
of our, with her, person, spending time.

• Logistic Regression:my, she, our, and, good, he, my family,
we, it, sleep.

Following, we report those referring to models trained on

predefined features.

• SVM: sexual, Dic, Social, socrefs, feeling, we, Affect, Drives,
insight, WC.

• Naïve Bayes: Dic, Social, socrefs, number, moral, feeling,
we, focuspast, Drives, illness.

• Logistic Regression: Dic, Social, socrefs, pronoun, Ana-
lytic, feeling, we, Affect, focuspast, Drives.

This helps us shed light on how different algorithms interpret

the data; some overlap in the reported features occurs because

the different algorithms, despite using distinct mechanisms to es-

timate importance, converge on similar cues that are consistently

predictive of SS. We calculate the correlation between feature im-

portance rankings across the different models by computing the

Pearson correlation coefficient between the feature importance

scores of each pair of models, using their respective importance

values across all features. This is displayed in Figures 6 and 7

in the Appendix C. A high positive correlation indicates similar

feature rankings and vice versa. The highest correlation is mea-

sured between SVM and LR models, while the lowest between

NB and LR for models trained on learned features, and between

SVM and NB for models trained on predefined features.
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Figure 1: Top-10 Features for TF-IDF Models

Figure 2: Top-10 Features for LIWC Models

7 Discussion
Our results indicate that the models trained on predefined fea-

tures (LIWC) generally outperform those trained on learned fea-

tures (TF-IDF n-grams), with the SVM model achieving the high-

est classification performance (RQ1-2). This suggests that LIWC

features, which encapsulate linguistic and psychological con-

structs, provide a structured and interpretable representation

of textual patterns related to SS. In contrast, TF-IDF captures

surface-level word frequency distributions, which may be more

susceptible to noise and context variability, limiting its predictive

power for capturing abstract constructs like SS. Furthermore, our

results support the findings by Caporusso et al. [4] regarding

LIWC features correlated with SS. Notably, models trained on

TF-IDF features tend to exhibit higher aggregated feature im-

portance scores compared to those trained on LIWC. This could

be attributed to the fact that TF-IDF operates on a larger and

more granular feature space, capturing subtle variations in word

usage. As a result, many features contribute partially to model

decisions, leading to a higher sum of importance values across

all features. In contrast, LIWC features are more constrained and

predefined, leading to more concentrated but lower cumulative

importance scores. This suggests that while TF-IDF captures a

broader spectrum of textual variations, LIWC provides a more

targeted and structured linguistic representation. Many of the

features identified as relevant for the classification of SS (e.g., we
and social referents) intuitively align with the nature of SS (RQ3).

8 Limitations and Future Work
This study serves as a pilot for the interpretable classification of

different Self aspects in text, focusing on SS. Several areas for im-

provement remain. Clearer annotation guidelines are needed for

consistency. The choice of restricting to linear models, LIWC fea-

tures, and unigrams/bigrams was appropriate for this exploratory

study prioritising interpretability; however, it inevitably limits

performance and representational richness. In future work, we

plan to complement this approach with more powerful models

and richer feature sets (e.g., embeddings). Here we wanted to

compare models trained on learned vs predefined features, but

we plan to train models on both. While in this study we did not

perform hyperparameter optimisation, we will do so in the future.

We aim to train a neural network for multi-class classification,

enabling simultaneous prediction of SS and other Self-aspects, al-

lowing for a more comprehensive analysis of self-representation

in text. In the future, we plan to employ different datasets and

implement Demšar’s evaluation method [8]. Our long-term goal

is to be able, given a text instance, to determine what Self aspects

are present and how they are expressed, in an explainable man-

ner. To do so, it is not only necessary to extend our work to other

Self-aspects, but to move beyond a binary classification for each

of them. Work on the ontology underpinning future studies is

ongoing [13].
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A Instructions for Labelling: Social Self
In the column relative to Social Self, insert:

• 0: if the Social Self is not present.
• 1: if the Social Self is present.

Following, we provide a definition of Social Self [4], instruc-

tions, and examples of a text instance where it is present and a

text instance where it is not present, taken from the dataset to

be labelled:

Definition: The Self as it is shaped and/or perceived when

in an interaction or relationship of sorts with other people or

entities to whom we attribute qualities of an inner life.

Instructions
For Social Self to be present in a text instance it is not enough

for the text instance to contain references to other people and/or

entities, but it has to containmentions of the author’s interactions

with them, influence on them, or influence they have on the

author. This can be even minimal, e.g., in the form of referring to

a person as my sister, or by using the first-person plural pronoun

instead of the singular one.

Examples

A.0.1 Text instance containing Social Self: "My family was the

most salient part of my day, since most days the care of my 2 chil-

dren occupies the majority of my time. They are 2 years old and 7

months and I love them, but they also require so much attention

that my anxiety is higher than ever. I am often overwhelmed by

the care they require, but at the same, I am so excited to see them

hit developmental and social milestones."

Explanation of text instance with Social Self present: In this text

instance, the author report on other people they are in some sort

of relationship with, and about some aspects of their relationship

and how they make the author feel.

A.0.2 Text instance not containing Social Self: "Yoga keeps me

focused. I am able to take some time for me and breathe and work

my body. This is important because it sets up my mood for the

whole day."

Explanation of text instance with Social Self not present: In this

text instance, the author does not report on any person, animal,

or other entities to whom we attribute qualities of inner life.

General NotesWhile a certain Self-aspect might not be promi-

nently present in a text instance in its entirety, if it is present in

a part of the text instance to be labelled, then it has to be labelled

as present in the text instance. A given text instance can have

none of the Self-aspects present, one of them present and two of

them non-present, two present and one non-present, or all three

of them present—any combination is possible.

B Evaluation

Figure 3: Confusion Matrices: Models Trained on Learned
Features (TF-IDF)

Figure 4: Confusion Matrices: Models Trained on Prede-
fined Features (LIWC)

Figure 5: Pairwise Wilcoxon Signed-Rank Test Results (p-
values)
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C Feature Importance

Figure 6: Correlation Between Feature Importance Across
Models Trained on Learned Features (TF-IDF)

Figure 7: Correlation Between Feature Importance Across
Models Trained on Pre-Defined Features (LIWC)
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