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Abstract

This paper, part of the European Horizon project Plooto, de-
tails an end-to-end, data-driven framework for reusing expired
carbon-fiber prepregs in drone production. First, 19 batches of ex-
pired prepregs were tested, revealing that most remained usable
within the first year after expiration. Machine learning models
were then developed to predict material usability pre-production
and product quality post-production, using manufacturing data
and time-series features. To facilitate this process, a dedicated
data pipeline and an interactive Product Quality Explorer tool
were created to support explainable model development and in-
tegration with industrial partners. This framework demonstrates
how combining material requalification with data-driven predic-
tions can lower costs and support circularity in drone production.
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1 Introduction

The growing demand for lightweight, high-performance materi-
als is driving the increased use of carbon fiber reinforced poly-
mers (CFRPs) in industries such as aerospace, automotive, and
drones. However, this rapid adoption also creates challenges,
particularly with the accumulation of expired materials. While
much research has focused on recycling fully cured CFRPs, less
attention has been given to the reuse of uncured prepregs, which,
despite expiring during storage, can still retain valuable proper-
ties [5]. Addressing this challenge is crucial for advancing circular
economy principles in high-tech manufacturing.

This paper presents research from the European Horizon
project Plooto, focusing on the reuse of expired prepregs in sus-
tainable drone production. Our work contributes in three key
areas: (1) a comprehensive evaluation of the effects of aging on
expired prepregs through thermal, chemical, and mechanical test-
ing to establish requalification thresholds [1], (2) the development
of machine learning models to predict the usability of expired
prepregs before production, and (3) the application of predictive
models to assess the quality of final products after production,
specifically for sandwich panels made from recycled prepregs.
By combining experimental testing with data-driven methods,
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our findings highlight the potential to reduce waste and enhance
sustainability in drone manufacturing.

By integrating machine learning models to predict the usabil-
ity of expired prepregs and assessing the quality of final products,
we provide industrial partners with actionable insights that di-
rectly enhance operational decision-making. The combination
of material requalification and predictive analysis supports the
sustainability goals of the drone production process.

2 Data and Methods

2.1 Materials and experimental techniques
used for prepreg usability assessment

Expired rolls of epoxy prepregs from HP Composites S.p.A were
used for this study. A total of 19 prepreg batches were investi-
gated, comprising four different resin systems (ER450, IMP509,
X1, ER431), with reinforcement varying according to supplier
availability. Usability is assessed through periodic chemical-physi-
cal and mechanical testing after the expiration date, to monitor
property changes in materials stored at -18°C. Differential Scan-
ning Calorimetry (DSC) tests were performed with Mettler Toledo
DSC 823e on uncured prepreg samples by applying a dynamic
heating from -40°C to 250°C at 20°C/min under a nitrogen at-
mosphere. DSC analysis provides two key parameters: the glass
transition temperature of the uncured system (Ty), related to
the initial crosslink density, and the residual cure degree («), cal-
culated from the polymerization enthalpies values. Composite
plates for physical and mechanical testing were manufactured
by draping a variable number of prepreg plies at 0°, depending
on reinforcement type, to obtain cured laminates of ~ 3 mm. The
prepreg plies were stacked on a flat mold surface over a peel
ply. The plates were then covered with an additional peel ply,
a release film, and a breather layer. The self-adhesive seal and
the vacuum bag were used to create a sealed vacuum during
the entire process. Plates curing was carried out in a hot press
according to the curing cycle recommended by the supplier in
the material datasheet, as reported in the table 1. The void con-
tent (V) was measured on five specimens through a digestion
procedure according to standard ASTM D3171 Method A. [3] The
interlaminar shear strength (ILSS) tests were performed with a
3-point bending system on MTS Insight machine according to
the standard test ASTM D2344 [2] on five different specimens for
each prepreg batch. These experimental results, including DSC
data, ILSS, and void content (V) measurements, provide essential
features for the machine learning models discussed in Section
2.2. The values of key properties such as the glass transition tem-
perature (Ty), residual cure degree (a), and interlaminar shear
strength (ILSS) are directly used to predict the usability of the
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expired prepregs and to assess the quality of the final products
after manufacturing.

Material | Temperature (°C) | Time (h) | Pressure (bar)
ER 450 135°C 2h 6 bar
IMP 509 140°C 1.5h 4 bar
X1 120 130°C 1.5h 6 bar
ER 431 125°C 1h 5 bar

Table 1: Curing cycle parameters for the plates recom-
mended in the material datasheet.

2.2 Predicting the usability and key
parameters of prepreg using machine
learning methods

The results from the DSC tests, along with other experimental
data such as ILSS and void content (V;) collected in Section 2.1,
were systematically organized and used as input features for the
machine learning models to predict prepreg usability and key
process parameters. Each row represents one checkpoint on an
expired roll and includes: test date, month code, prepreg code
and lot, type (expired roll), stocking temperature (—18 °C), orig-
inal expiry date, a (%), Tg,onset (°C), ILSS (MPa), V; (°C; curing
temperature), Usable (Y/N), and, when redefinition is applied,
pressure (bar), temperature (°C), time (min), and the redefined
expiry date. For the correct operation of machine-learning meth-
ods, a days-after-expiry feature was introduced and computed as
test_date —original_expiry_date.

The study addresses two predictive tasks: a classification prob-
lem for Usable (three classes: Y, Y/N, N) and regression problems
for process/quality parameters (ILSS, Ty onset, Ve, @). Analysis pro-
ceeds in two stages. First, a per-material stage fits separate models
for each prepreg system (ER450, IMP509, ER431, X1) to resolve
material-specific issues observed during preliminary inspection.
Second, a pooled stage trains a unified model over all records to
evaluate cross-material generalisation.

Predictors are restricted to pre-test covariates: days-after-
expiry, material identity, normalised lot descriptors, month code,
storage conditions, and other metadata available at decision time,
while measured targets are excluded from inputs to prevent label
leakage. Random-forest classifiers and regressors (scikit-learn) pa-
rameterised as Nestimators=100, max _depth=3, random_state=42
serve as the base models and enable inspection of feature impor-
tances.

Performance estimation relies on leave-one-out cross-validation
(LOO-CV) [6] in both stages. For the classification task, overall
accuracy is reported to evaluate the model’s performance in pre-
dicting prepreg usability. For the regression tasks, R?, MAE, and
RMSE are used to assess the model’s ability to predict continu-
ous process parameters. R? measures the proportion of variance
explained, while MAE provides the average error magnitude,
and RMSE empbhasizes larger errors. Feature-importance profiles
are examined to identify the dominant drivers of re-usability
and variation in process parameters across materials and in the
pooled setting.

2.3 Machine Learning for Post-Production
Quality Prediction

This part of the pilot addressed the prediction of production qual-
ity in sandwich panel manufacturing, with the aim of supporting
drone production after re-qualification.
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The dataset combined two types of information. The first com-
ponent consisted of production metadata, which described the
context of each cycle. These attributes included the date of the cy-
cle, the operator responsible for production, the specific prepreg
batch (identified by lot number), and the number of days between
when the prepreg was made and used in production. Tool-related
information was also provided, such as which tool was used and
how many cycles had passed since its last maintenance. Each cy-
cle was associated with a measurement curve identifier, a quality
result (labelled as either fully compliant, minor defect, or scrap),
and, in cases of non-compliance, the reported reason for failure.

The second component of the dataset consisted of time-series
data collected during the manufacturing process. For each cycle,
approximately 1,300 measurements were recorded at ten-second
intervals. These measurements included the chamber’s target
temperature (setpoint), the actual chamber temperature, the tem-
perature of the piece being moulded, and the vacuum setpoint.
Together, these readings captured the thermal and pressure dy-
namics that govern the curing of composite materials.

To make this information usable for machine learning mod-
els, feature extraction was required. Temperature curves were
divided into intervals based on their inflection points—that is,
the points where the curve transitioned from stable plateaus to
rising or falling slopes. Each interval was then summarised using
statistical properties such as average, minimum, maximum, vari-
ance, and trend. In addition to these aggregated features, new
variables were engineered to capture deviations from expected
behaviour. For example, the vacuum difference quantified the gap
between the measured and target pressure, while the temperature
difference measured the offset between chamber setpoints and
the actual values recorded. These derived variables provided in-
dicators of process deviations that might affect the final product
quality.

The analysis followed the CRISP-DM methodology, beginning
with data fusion and preparation, followed by feature selection
and model training. Metadata and time-series features were com-
bined into a single dataset, from which irrelevant or redundant
variables were removed.

For predictive modelling, several classification algorithms
were evaluated to balance interpretability and performance. Lo-
gistic regression and decision trees offered transparent decision
boundaries, while ensemble methods such as random forests and
gradient boosting provided stronger predictive power by aggre-
gating multiple weak learners. Multi-layer perceptrons (MLP)
were also considered to capture non-linear patterns in the data.

To integrate the methodology into the production workflow,
a dedicated service was implemented. Metadata was provided in
an Excel (.xlsx) file, while the process data was provided in .rdb
formats by the industrial partner. A pipeline was developed to
automatically download these files from a shared Dropbox folder
provided by the industrial partner, parse the .rdb data, and convert
the files into structured JSON files. The JSON files were enriched
with derived variables and unique identifiers, then uploaded to
the Plooto platform via its APIL This ensured seamless integration
of raw production data with machine learning models, enabling
continuous prediction of product quality.

As part of this work, we developed a tool called Product Qual-
ity Explorer to support domain experts in analyzing production
data and assessing product quality [4]. Its primary goal is to
facilitate the creation of explainable machine learning models.
The tool helps users understand factors influencing quality out-
comes and make informed adjustments to the manufacturing
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process. The tool provides a summary of descriptive statistics
(count, mean, standard deviation, minimum, quartiles, and max-
imum) and allows users to visualize selected columns through
histograms and boxplots. Finally, it generates a heatmap of all
columns to provide an overview of relationships within the data.

In the next step, the user selects the features to include in the
machine learning model. This step is necessary both to define the
target variable for prediction and to exclude irrelevant columns
such as IDs, dates, or textual data. The tool also provides several
options for handling missing values. The user can choose the
approach that best suits the dataset: leaving missing values un-
changed (which may prevent some algorithms from functioning
properly), removing features with missing values, removing rows
containing missing values, or imputing missing values using the
column mean.

The next step provides the option to generate new attributes.
This can be done through techniques such as one-hot encoding,
polynomial feature generation, or logarithmic transformations.
After creating new attributes, the user selects the features to be
used in the machine learning process. This selection can be per-
formed manually or automatically with the assistance of genetic
algorithms.

Finally, the user can select which machine learning models to
apply. Once training is complete, the results are presented in a
summary table containing performance metrics such as precision,
recall, F1-score, and accuracy, along with a confusion matrix
visualization. The tool also provides a comparative overview of
model performance across all metrics (precision, recall, F1-score,
accuracy).

In addition to evaluation, the system integrates explainability
techniques. Global explanations are generated using SHAP to
show how features influence model decisions across the entire
dataset, while local explanations are provided using SHAP and
LIME to illustrate how the model arrived at a prediction for a
specific datapoint. These explanations are supported by interac-
tive visualizations, which enable users to better understand both
the overall model behavior and individual predictions.

3 Results

3.1 Results of usability assessment

Ageing trends from DSC. Differential scanning calorimetry
(DSC) on the selected prepreg rolls (grouped by resin system)
shows that Ty increases progressively over time after expiration.
This behaviour is consistent with i) increasing molecular weight
and ii) higher crosslink density of the polymer network due to
ongoing polymerization. The measured « values align with the
Ty trend, indicating a time-dependent decrease in the residual
degree of cure; notably, within the first two years after expiration,
the reduction remains limited to <15%.

Mechanical strength and porosity evolution. Across all
batches, interlaminar shear strength (ILSS) exhibits a time-depen-
dent decline: reductions generally do not exceed 15% within the
first 12 months after expiration, whereas more pronounced de-
creases of 25-30% occur in the 12-24 month interval. Consistent
with this mechanical trend, the void content V. remains below
10% during the first 12 months after expiration and increases
thereafter, often exceeding 15% in later months.
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3.2 Predictive modeling results for prepreg
reuse

We analysed N = 81 inspection records with a two-stage work-
flow: global model across all prepregs and material-specific mod-
els were trained and estimated using leave-one-out cross-validation
(LOO-CV). Table 2 summarizes the results of all experiments, in-
cluding classification and regression performance for global and
material-specific models.

Type Usability | Metrics a | Ty | ILSS Ve
AggR*= | 083 | 0.77 | 0.7 | 0.77
MAE = | 1.22 | 1.05 | 449 | 1.52
RMSE = | 1.59 | 1.33 | 5.93 | 1.98

AggR*>= | 086 | 0.83 | 0.92 | 0.94

All types | Acc=0.91

ER450 | Acc=0.96 | MAE = | 1.25 | 0.54 | 2.75 | 0.87
RMSE = | 151 | 0.77 | 4.05 | 1.15
AggR*>= [ 076 | 0.6 | 0.82 | 0.8
IMP509 | Acc=0.87 | MAE = | 1.44 | 123 | 25 | 1.35
RMSE = | 1.9 | 1.58 | 3.01 | 1.75
AggR*= | 082 | 0.79 | 0.79 | 0.43
X1 Acc=0.96 | MAE= | 1.12 | 0.98 | 2.41 | 1.77
RMSE = | 1.44 | 1.12 | 3.09 | 2.32
AggR*= | 0.97 | 0.88 | 0.94 | 0.87
ER431 | Acc=1 MAE = | 057 | 0.89 | 1.43 | 1.06

RMSE = | 0.76 | 1.15 | 1.93 | 1.64

Table 2: LOO-CV performance across prepregs for regres-
sion and classification

As we can see from the presented results, the global multi-
class classifier achieved 0.91 accuracy under LOO-CV on an im-
balanced set (54 Y / 14 Y-N / 13 N), indicating that a simple pre-
production screen is feasible from routine metadata. Per-material
classifiers were even higher (often >0.96), but these figures are
almost certainly optimistic given tiny per-material sample sizes
and class imbalance. A detailed classification report, including
precision, recall, and F1 scores, can be provided upon request.

A consistent trend across the regression tasks is the superior
performance of models trained on a single prepreg type compared
to the global model trained on all data.! For instance, the global
model predicted ILSS with an aggregate R? of 0.70, whereas the
material-specific models for ER450 and ER431 achieved much
higher scores of 0.92 and 0.94, respectively. This suggests that
ageing and curing behaviours are highly specific to the resin
system, and tailored models better capture these characteristics.
However, this is not a universal rule; the prediction of V, for
the X1 prepreg (aggregate R?=0.43) was notably worse than the
global model (aggregate R>=0.77), indicating that in cases of very
limited data or less distinct features, the global model can be
more robust.

Feature importance analysis performed during the experi-
ments revealed the most influential factors in predicting key
parameters in Table 2. The Days_Since_Expiry was consistently
one of the most critical predictors across both global and material-
specific models, confirming its fundamental role in tracking ma-
terial degradation. Furthermore, the analysis revealed strong
intercorrelations between the measured properties themselves.
For example, the degree of cure (« ) and Ty were often the most
The dataset is modest and unevenly distributed across resins (ER450 n=28, X1

n=22, IMP509 n=15, ER431 n=14). Consequently, per-material models are trained
on few observations and LOO-CV performance is likely optimistic.
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important features for predicting ILSS and V, indicating that
these thermal and chemical properties are highly interdepen-
dent. Batch identifiers (prepreg code/lot) were generally minor,
although *lot™ occasionally ranked higher for ILSS, indicating
possible batch effects.

Taken together, these patterns suggest that compact, physics-
aligned feature sets explain most of the variance, and that ageing/a
consistently drive both regression and classification. Neverthe-
less, limited data—especially for IMP509 and ER431—and the
optimism of LOO-CV preclude production use without further
data collection and validation across broader process conditions.

3.3 Evaluation of Post-Production
Classification Models

The predictive modelling was applied to production cycles from
sandwich panel manufacturing provided by the Italian pilot part-
ners. We also used the aforementioned Product Quality Explorer
tool after we had already transformed the data and created new
features. The objective was to assess whether production quality
outcomes could be predicted from a combination of metadata
and process-derived time-series features. This is particularly im-
portant for supporting drone production after re-qualification,
as early detection of potential quality issues can prevent defec-
tive panels from progressing further in the manufacturing chain.
Moreover, it can save manufacturers time, energy, and personnel
costs, as each panel must currently be manually inspected and
tested.

The dataset comprised 294 production cycles, the majority of
which were compliant, with only a small fraction classified as non-
compliant. This strong imbalance reflects real-world conditions,
where defects are rare but critical, yet it also creates difficulties
for machine learning approaches. Most algorithms tend to favour
the majority class, which can lead to high overall accuracy but
poor detection of defective cases.

Several classification algorithms were tested. Overall accuracy
values appeared relatively high (between 0.77 and 0.85) this was
largely driven by the correct classification of compliant cases.
Performance on the minority (non-compliant) class was weaker,
as reflected by modest recall and F1-scores. This indicates that
while the models are well-suited to reproducing the majority
outcome, their ability to identify rare defective panels is more
limited.

These findings suggest that machine learning can provide use-
ful insights into production quality trends, but further progress
requires additional data, particularly more defective cases. A
larger dataset would allow models to better distinguish between
compliant and non-compliant cycles, thereby increasing their
value as a decision-support tool in quality assurance.

The detailed performance of each tested classifier is reported
in Table 3.

Model Accuracy Precision Recall F1-Score
Logistic Regression 0.846 0.838 0.838 0.838
Decision Tree 0.769 0.764 0.738 0.745
Random Forest 0.808 0.797 0.806 0.800
XGBoost 0.808 0.797 0.806 0.800
LightGBM 0.846 0.838 0.838 0.838
Support Vector Machine (SVM) 0.808 0.801 0.788 0.793
Multi-layer Perceptron (MLP) 0.808 0.801 0.788 0.793

Table 3: Performance of machine learning models on the
Italian pilot sandwich panel dataset.
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4 Conclusion

This study demonstrates an end-to-end approach that integrates
material science and machine learning to enhance the reuse of
expired prepregs in drone production. By evaluating and requali-
fying expired materials, we have shown that they remain service-
able within the first year after expiry, with gradual performance
decline, particularly in interlaminar shear strength and curing
behavior. This underscores the effectiveness of resin-specific
reuse gates and modified processing windows to extend material
lifetimes.

Machine learning models were employed to support both pre-
production and post-production processes. The pre-production
models classified expired prepregs for reuse, while the post-
production models predicted the quality of sandwich panels based
on combined metadata and process features. Despite challenges
related to data imbalance, the results demonstrate the potential
for predictive quality monitoring in manufacturing, contributing
to more sustainable production practices.

The integration of machine learning with material science not
only optimizes requalification processes and reduces waste, but
also supports cost reduction and environmental sustainability in
high-performance manufacturing. Future work should focus on
expanding datasets, refining resin-specific criteria, and explor-
ing the broader applicability of the models in other composite
manufacturing contexts, further advancing circular economy
principles.
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