
Predicting milling overload based on sensor data: a
graph-based approach

Roy Krumpak

Jožef Stefan Institute

Ljubljana, Slovenia

krumpak.roy@gmail.com

Jože M. Rožanec

Jožef Stefan Institute

Ljubljana, Slovenia

joze.rozanec@ijs.si

Dunja Mladenić

Jožef Stefan Institute

Ljubljana, Slovenia

dunja.mladenic@ijs.si

Zhenyu Guo

BGRIMM Technology Group

Beijing, China

guozhenyu@bgrimm.com

Tao Song

BGRIMM Technology Group

Beijing, China

songtao@bgrimm.com

Dumitru Roman

SINTEF Digital

Oslo, Norway

titi.roman@sintef.no

Inna Novalija

Jožef Stefan Institute

Ljubljana, Slovenia

inna.koval@ijs.si

Xiang Ma

SINTEF Industry

Oslo, Norway

xiang.ma@sintef.no

ABSTRACT
In this paper, we present an approach to predict milling over-

load that leverages time series-to-graph transformations, which,

along with domain data encoded as a graph, are fed to predictive

machine learning models. Additionally, we compared the perfor-

mance of the graph-based approachwith the TS2Vec foundational

model, regarded as the State-Of-The-Art. Our results show that

TS2Vec performed best across all timewindows.While combining

TS2Vec and graph embeddings resulted in reduced performance

compared to TS2Vec, it enhanced the outcomes when compared

to the sole use of graph embeddings. Furthermore, combining Or-

dinal Partition Graph and TS2Vec embeddings resulted in more

stable performance across predictive time windows.

KEYWORDS
Time series, graphs, mining, milling, predictive maintenance,

sensor data

1 INTRODUCTION
Milling, central to mineral processing, involves breaking down

ores into smaller particles, but is prone to abnormal behavior

due to material properties and upstream steps (Hodouin et al.

2001 [3]; Galán et al. 2002 [2]). While traditional control relied

on operators, advances in machine learning (ML) have enabled

data-driven optimization and predictive maintenance (Mobley

2002 [6]). Graph-based methods are increasingly applied to time

series to capture temporal and structural relations (Silva 2021

[8]). Variants include Natural Visibility Graphs (NVG) to capture

the time series topology (Lacasa et al. 2008 [4]; Stephen et al.

2015 [10]), Quantile Graphs for time series values’ transitions

(Silva et al. 2024 [9]), and Ordinal Partition Graphs to capture

regular temporal patterns and their transitions.

Jože M. Rožanec and Roy Krumpak are co-first authors with equal contribution and

importance.

Corresponding author: Jože M. Rožanec: joze.rozanec@ijs.si.

Permission to make digital or hard copies of part or all of this work for personal

or classroom use is granted without fee provided that copies are not made or

distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this

work must be honored. For all other uses, contact the owner/author(s).

Information Society 2025, 6–10 October 2025, Ljubljana, Slovenia
© 2025 Copyright held by the owner/author(s).

The contributions of this paper include the use of multiple

graph representations (not just one) to capture the structure

of a time series and evaluation of the described approach on a

real-world dataset.

2 USE-CASE DESCRIPTION
BGRIMM Technology Group is a Chinese leader in mining and

mineral processing solutions, focusing on automation and intelli-

gent control, with grinding optimization as a core area. Grind-

ing is both the most energy-intensive step in mineral process-

ing—accounting for 40% of total energy costs—and a key de-

terminant of downstream recovery and product quality (Zhou

et al. 2009 [11]; Lessard et al. 2016 [5]; Groenewald et al. 2006

[1]). At a 10,000 ton/day copper plant in Anhui Province using a

SAG–ball–pebble (SABC) circuit, BGRIMM is developing intelli-

gent control strategies to maximize throughput while preventing

SAG mill overload. Central to this effort is accurate SAG power

prediction, which serves as a feedforward signal to improve feed

regulation and overall process efficiency.

3 DATASET
The dataset used in this article was collected and provided by

BGRIMM Technology Group. The data consists of various sen-

sor measurements from the machines used in their mine’s ore

processing plant, accounting for a total of 42 columns. One col-

umn stores the date and time of the measurement, while the rest

contain numerical values. The sensor data was sampled every

two seconds and compiled across a hundred days from January

1
𝑠𝑡

2019, to April 12
𝑡ℎ

2019, excluding the first two days of April,

resulting in 4.32 million rows in the data. Besides the raw data,

a description of an overload state was also provided. A column

named SAG_2201.power, which represents the power of the SAG

mill, is used to decide whether there is an anomaly in the data.

If the column reaches a value above 4700 [kW] and has an up-

ward trend or whenever it surpasses the value of 4800, this is

considered an overload of the system, and a supervisor might

take appropriate actions to stop the overloading.

https://orcid.org/0000-0002-3665-639X
https://orcid.org/0000-0003-4480-082X
https://orcid.org/0000-0003-1918-2863
https://orcid.org/0000-0002-1876-9024
https://orcid.org/0000-0001-6397-3705
https://orcid.org/0000-0003-2598-0116
https://orcid.org/0000-0001-6465-0254


Information Society 2025, 6–10 October 2025, Ljubljana, Slovenia Rožanec, Krupak, et al.

Figure 1: The diagram depicts the milling plant components and how they are connected. The components of interest are
highlighted with red rectangles.

Figure 2: SAG_2201.power column (light gray), where anom-
alies (gray dots) are annotated based on the moving aver-
age (gray), the automatic anomaly label threshold (dotted
black), the possible anomaly label threshold (solid black),
and linear regression slope (positive - dashed and dotted,
negative - dashed).

4 METHODOLOGY
4.1 Data preparation
Based on experts’ input, the samples with SAG_2201.power <

4700 were labeled 0 (no anomalous event), others with 1 (milling

overload). A 1-hour (1800-sample) moving average with linear

regression checked for upward trends; if none, the label was

reset to 0 (see Fig. 2). Next, we selected a subset of columns to

be used in the analysis, utilizing expert knowledge to choose

only those columns that are measured in the workflow before

SAG_2201.power column. The resulting columns are

LIT_2103A.PV, FCV_2201.PID_SP,
SAG_2201.Press_Ziyouduangaoya2, Feeder_Control.SP,
SAG_2201.power and WIT_2101.PV.

4.2 Feature engineering
The raw data from the selected columns was first checked for

any missing values, which were not present. In the next step, we

detected changes in the columns and then replaced the values in

the samples between two such changes with the mean value of

that segment (see Fig. 3a). This data was further simplified with

the help of a k-bins discretizer, which was used to encode each

column with seven values based on the quantile into which each

sample fell (see Fig. 3b). The column named WIT_2101.PV was
excluded from the first step of data simplification and graph rep-

resentations and was processed separately because its values did

not appear to have distinct oscillating levels and did not benefit

from such processing. After discretization, every column had an

integer value between zero and six, and with each row being then

interpreted as a state. The average state duration is 42 seconds.

Repeated states (duplicate rows) were dropped, decreasing the

size of the dataset (see Fig. 3c). For a visual representation of

these steps, see Fig. 3, where the data from one picture is used,

and, where important, also noted in the next one. The data here

include raw data in Fig. 3a, the ’means’ data in Fig. 3a and Fig. 3b,

simplified data in Fig. 3b, and unique sample data in Fig. 3c. The

annotated plot in Fig. 3c is used as the base data for an example

NVG generation in Fig. 4. The numbers represent the same data

point, one in the plot and one in the graph representation.

4.3 Modeling the data as graphs
We employ three strategies for converting time series into graphs:

Natural Visibility Graphs (NVG), Ordinal Partition Graphs (OPG),

and Quantile Graphs (QG). We used the time series to graph and

back library
1
to achieve this.

For each sample in the data, we built a graph representation

of it by looking at the samples within a selected window 𝑤𝑠

preceding it and applying the described time series to graph

strategies on each column, apart from WIT_2101.PV, separately.
Such graphs, called subgraphs, were bound to a default graph

structure that presents which columns are neighboring in the

plant process (see Fig. 1) by connecting a node which represents

the SAG_2201.power column to every other column. The result

of this step was a larger type of graph called a state graph (see

Fig. 5). The black nodes represent nodes for a particular column,

while gray nodes represent the subgraphs created from the time

series. The subgraphs are connected to the column nodes via the

node that corresponds to the first instance from the timeseries.

Depending on the experiment, we made an additional step of

joining𝑤0 many of the state graphs into a larger graph, which

was used to generate embeddings.

1
https://timeseriestographs.com/

https://timeseriestographs.com/


Predicting milling overload based on sensor data: a graph-based approach Information Society 2025, 6–10 October 2025, Ljubljana, Slovenia

(a) SAG_2201.power column (light gray), where a
threshold change detection was used to detect
changes and to replace in-between values with the
mean value (black).

(b) Result (dashed black) of applying a k-bins
discretizer model on the previously simplified
data (solid black) from Fig. 3a. Note the differ-
ent y-axis scales of the overlaid graphs.

(c) A representation of the simplified column data
fromFig. 3b, considering only the unique consecutive
values.

Figure 3: Pipeline of transformations on the
SAG_2201.power column.

Figure 4: The Natural Visibility Graph representation of
the data in Fig. 3c.

A Graph2Vec model from the karateclub library [7] was used

to generate graph embeddings, with an embedding size of 250.

Figure 5: Example of a state graph.

We chose this model for its ease of use and performance reasons.

Column WIT_2101.PV was also transformed into an embedding

form by using a TS2Vec model
2
. The embedding output size was

set to 40, as this is approximately the size of features proportional

to the number of columns in the graph embeddings.

4.4 Model training and evaluation
An initial subset of the data, which included the data from the

first available day, was used to test the performance of different

graph embeddings. This was done to reduce the time andmemory

consumption for the first assessment. A CatBoost model was

used, where it was trained for 800 iterations, with a learning

rate equal to 0.03 and the Cross Entropy loss function, as well

as the leaf regularization parameter set to 0.3. To assess our

model’s ability to predict anomalous states, we also tried to fit

the model on the same data, but with the target column shifted

accordingly. This was done for up to 90 shifts, which is equivalent

to predicting 63 minutes in advance. When we selected the best

graph embeddings, we built and tested the model on the entire

data set.

5 EXPERIMENTS
We conducted three experiments, all of which follow the same

template, where we tested how the structure of a graph affects

the end model’s ability to predict anomalies. This includes first

creating subgraphs as NVG, OPG and QG representations of the

columns with window size 𝑤𝑠 and joining them into the state

graph representation (see Fig. 5). Finally,𝑤0 many of these state

graphs are joined sequentially according to the order given by

the time at which the represented states appear in the data. The

experiments differ in the window sizes𝑤𝑠 and𝑤0. Experiment A

used𝑤𝑠 = 50,𝑤0 = 1, Experiment B used𝑤𝑠 = 15,𝑤0 = 20, lastly

Experiment C used𝑤𝑠 = 15,𝑤0 = 40. If we take the average state

duration of 42 seconds into account, we see that in Experiment

A, data from the last 35 minutes is used, in Experiment B, 15

minutes, and finally in Experiment C, 28 minutes.

We carried out experiments similar to Experiment B, where

the state graphs were structured based only on one specific type

of subgraph. Furthermore, the impact of the separately processed

WIT_2101.PVwas also tested, by repeating the same experiments,

with the difference being that this column’s embeddings were

excluded when training the final model. These experiments do

not have a mark in the ’WIT’ column of the resultst Table 3.

2
https://github.com/zhihanyue/ts2vec

https://github.com/zhihanyue/ts2vec


Information Society 2025, 6–10 October 2025, Ljubljana, Slovenia Rožanec, Krupak, et al.

Time to predict[min]

7 21 35 49 63

0.9905 0.9528 0.8929 0.8235 0.7623

Table 1: ROC AUC results of the experiment where all data
was embedded with TS2Vec models.

Time to predict[min]

Experiment 7 21 35 49 63

A 0.6083 0.5763 0.5356 0.5333 0.4945

B 0.6943 0.6698 0.6364 0.6184 0.6128
C 0.5897 0.5688 0.6109 0.6417 0.5910

Table 2: ROC AUC results of the three experiments with
respect to how far ahead the model is predicting. The best
results are marked in bold text.

Lastly, a separate experiment was carried out, in which all

raw data were processed using the TS2Vec model. Each column

had its own TS2Vec model, which was used to embed the data

associated with that column. Then, a CatBoost model with the

same configuration as in the previous experiments was used

in combination with TS2Vec joined embeddings to predict the

anomalies. These results are gathered in Table 1.

6 RESULTS
The results of the three experiments, which tested the infor-

mativeness of the graph structure, as well as the experiments

designed to determine which type of data is the most predictable,

are summarized in the following tables.

As can be seen in Table 2, Experiments A and C have lower

scores than Experiment B. However, Experiment C approaches

the performance of Experiment B at the maximum predicting

shift. For this reason, and because the types of graphs in Ex-

periment B are smaller compared to those in Experiment C, the

experiments that tested the impact of different types of data used

Experiment B-type graphs. The best results for the final model

were obtained from the data, where all columns were embed-

ded using TS2Vec models, as shown in Table 1. Similarly, the

results in table 3 show that when we predict anomalies from

only the TS2Vec embeddings of the column WIT_2101.PV, the
performance is the best.

Additionally, if we compare the experimentswith WIT_2101.PV
embeddings to the ones without them, we can see that the lat-

ter perform worse. This suggests that the TS2Vec embeddings

are more informative than the graph embeddings. Nevertheless,

when comparing different types of graphs used in the final graph,

we can see that OPGs alone yield the best performance.

A few possible explanations for the difference in performance

between the graph-based and time series-based approaches are

possible. First, when working with graphs, there are more pa-

rameters that need to be optimized, such as window sizes and

parameters for constructing graphs from time series. Another

reason might be that NVGs have approximately thirty times more

edges and eight times more nodes compared to OPGs and QGs,

which makes them disproportionately large. Additionally, the

construction of state graphs has repeated structures, which is

inefficient. Lastly, the TS2Vec embeddings do not have these lim-

itations, and embeddings can be made from the entirety of the

data, as opposed to the simplified ones when not using TS2Vec.

type of data used Time to predict[min]

NVG OPG QG WIT 7 21 35 49 63

✓ ✓ ✓ ✓ 0.6558 0.6418 0.6251 0.6402 0.6184

✓ ✓ ✓ 0.5938 0.6257 0.5831 0.5882 0.5725

✓ ✓ 0.7427 0.7146 0.6930 0.6853 0.6719

✓ ✓ 0.7265 0.6959 0.6586 0.6502 0.6365

✓ 0.7452 0.6978 0.6838 0.6734 0.6578

✓ 0.7219 0.6866 0.6643 0.6416 0.6096

✓ 0.9292 0.9025 0.8893 0.8004 0.7042

Table 3: ROCAUC results of themodels trained on different
types of graphs and data for Experiment B across all days.
The best results are written in bold text, while the second
best are underlined.

7 CONCLUSIONS
In this paper, we discuss the use of graph-based time series rep-

resentations for training machine learning models. Our experi-

ments suggest that while this approach has potential, it did not

outperform the TS2Vec foundational model and was unable to

yield superior results when combined with it. Future work will

explore alternative graph representations and utilize GNNs to

integrate topological, semantic, and time series information di-

rectly into a single machine learning model, aiming to achieve

superior results.

ACKNOWLEDGEMENTS
The Slovenian Research Agency supported this work. It was

also developed as part of the Graph-Massivizer project (grant

agreement No. 101093202), the enRichMyData project (grant

agreement No. 101070284), and the DataPACT project (grant

agreement No. 101189771), all funded by the Horizon Europe

research and innovation program of the European Union.

REFERENCES
[1] J.W. de V. Groenewald, L.P. Coetzer, and C. Aldrich. 2006. Statistical moni-

toring of a grinding circuit: an industrial case study. Minerals Engineering,
19, 11, 1138–1148. doi: 10.1016/j.mineng.2006.05.009.

[2] O. Galán, G.W. Barton, and J.A. Romagnoli. 2002. Robust control of a sag mill.

Powder Technology, 124, 3, 264–271. doi: 10.1016/S0032-5910(02)00021-9.
[3] D. Hodouin, S.-L Jämsä-Jounela, M.T. Carvalho, and L. Bergh. 2001. State of

the art and challenges in mineral processing control. Control Engineering
Practice, 9, 9, 995–1005. doi: 10.1016/S0967-0661(01)00088-0.

[4] L. Lacasa, B. Luque, F. Ballesteros, J Luque, and J.C. Nuño. 2008. From time

series to complex networks: the visibility graph. Proceedings of the National
Academy of Sciences, 105, 13, 4972–4975. doi: 10.1073/pnas.0709247105.

[5] J. Lessard, W. Sweetser, K. Bartram, J. Figueroa, and L. McHugh. 2016. Bridg-

ing the gap: understanding the economic impact of ore sorting on a mineral

processing circuit. Minerals Engineering, 91, 5, 92–99. doi: 10.1016/j.mineng

.2015.08.019.

[6] R. Keith Mobley. 2002. 4 - benefits of predictive maintenance. In An Introduc-
tion to Predictive Maintenance (Second Edition). Plant Engineering. (Second
Edition ed.). R. Keith Mobley, editor. Butterworth-Heinemann, Burlington,

60–73. isbn: 978-0-7506-7531-4. doi: 10.1016/B978-075067531-4/50004-X.

[7] B. Rozemberczki, O. Kiss, and R. Sarkar. 2020. Karate Club: An API Oriented

Open-source Python Framework for Unsupervised Learning on Graphs. In

Proceedings of the 29th ACM International Conference on Information and
Knowledge Management (CIKM ’20). ACM, 3125–3132. doi: 10.1145/3340531

.3412757.

[8] V.F. Silva, M.E. Silva, P. Ribeiro, and F. Silva. 2021. Time series analysis

via network science: concepts and algorithms. WIREs Data Mining and
Knowledge Discovery, 11, 3, 1–39. doi: 10.1002/widm.1404.

[9] V.F. Silva, M.E. Silva, and P. Ribeiroand F. Silva. 2024. Multilayer quantile

graph for multivariate time series analysis and dimensionality reduction.

International Journal of Data Science and Analytics, 1–13. doi: 10.1007/s4106
0-024-00561-6.

[10] M. Stephen, C. Gu, and H. Yang. 2015. Visibility graph based time series

analysis. PloS one, 10, 11, e0143015. doi: 10.1371/journal.pone.0143015.
[11] P. Zhou, T. Chai, and H. Wang. 2009. Intelligent optimal-setting control

for grinding circuits of mineral processing process. IEEE Transactions on
Automation Science and Engineering, 6, 4, 730–743. doi: 10.1109/TASE.2008
.2011562.

https://doi.org/10.1016/j.mineng.2006.05.009
https://doi.org/10.1016/S0032-5910(02)00021-9
https://doi.org/10.1016/S0967-0661(01)00088-0
https://doi.org/10.1073/pnas.0709247105
https://doi.org/10.1016/j.mineng.2015.08.019
https://doi.org/10.1016/j.mineng.2015.08.019
https://doi.org/10.1016/B978-075067531-4/50004-X
https://doi.org/10.1145/3340531.3412757
https://doi.org/10.1145/3340531.3412757
https://doi.org/10.1002/widm.1404
https://doi.org/10.1007/s41060-024-00561-6
https://doi.org/10.1007/s41060-024-00561-6
https://doi.org/10.1371/journal.pone.0143015
https://doi.org/10.1109/TASE.2008.2011562
https://doi.org/10.1109/TASE.2008.2011562

	Abstract
	1 Introduction
	2 Use-case description
	3 Dataset
	4 Methodology
	4.1 Data preparation
	4.2 Feature engineering
	4.3 Modeling the data as graphs
	4.4 Model training and evaluation

	5 Experiments
	6 Results
	7 Conclusions
	Acknowledgements

