Automating Numba Optimization with Large Language Models:
A Case Study on Mutual Information

Lucka Kozamernik
Teads
lucka.kozamernik@teads.com

Martin Jakomin
Teads
martin.jakomin@teads.com

Abstract

Contemporary large language models (LLMs) enable fast research
cycles when developing or optimizing new algorithms. In this
work, we investigate whether existing LLMs are sufficient to
automatically, under constraints of unit tests, produce implemen-
tations of computational extensive algorithms such as the mutual
information algorithm that would out-perform existing human-
made baselines. We establish an evaluation pipeline where new
proposed Al implementations are rigorously tested, evaluated,
and benchmarked against existing baselines. We used synthetic
numeric datasets of different sizes and results show 10-times
speed-up using LLM optimized implementations compared to
the naive Numba-based optimization while producing consis-
tently correct mutual information scores.

Keywords

optimization, mutual information, LLM, Numba

1 Introduction

Mutual Information (MI) stands as a fundamental measure in
information theory, quantifying the statistical dependency be-
tween two random variables. Its application is widespread and
critical across numerous domains, including feature selection
in machine learning, neuroscience for analyzing neural spike
trains, and bioinformatics for understanding gene regulatory
networks. The versatility of MI lies in its ability to capture arbi-
trary non-linear relationships, a significant advantage over linear
correlation measures like Pearson’s coefficient.

However, the computational cost of calculating mutual infor-
mation, especially for large datasets with continuous variables,
presents a substantial bottleneck. The standard approach involves
discretizing the data into bins in order to estimate probability
distributions, a process whose accuracy and performance are
highly sensitive to the chosen binning strategy and the efficiency
of the underlying implementation. For practitioners working
within the Python ecosystem, libraries like NumPy and SciPy
are standard tools, but their performance on MI calculations can
be suboptimal for high-throughput screening or large-scale data
exploration tasks.

To address this performance gap, Just-In-Time (JIT) compil-
ers like Numba [4] have become indispensable. By translating

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this
work must be honored. For all other uses, contact the owner/author(s).
Information Society 2025, Ljubljana, Slovenia

© 2025 Copyright held by the owner/author(s).

Blaz Skrlj
Teads
blaz.skrlj@teads.com

Jasna Urbancic
Teads
jasna.urbancic@teads.com

Python and NumPy code into optimized machine code at run-
time, Numba offers C-like performance without sacrificing the
flexibility and ease of use of the Python language. A well-written,
Numba-accelerated MI function can be orders of magnitude faster
than its pure Python equivalent. Despite these gains, achieving
optimal performance with Numba is not always straightforward.
The efficiency of Numba-jitted code is highly dependent on the
specific implementation patterns, data access methods, and loop
structures used—subtleties that often require significant program-
mer expertise to navigate.

This paper introduces a novel approach to bridge this gap: the
use of Large Language Models (LLMs) to automatically optimize
Numba-based mutual information algorithms. We hypothesize
that modern LLMs, trained on vast repositories of code, possess
the capability to analyze suboptimal Numba implementations
and refactor them into more efficient versions. Our work explores
whether an LLM can identify and correct common performance
anti-patterns in Numba code, such as improper loop organization
or inefficient data type usage, to generate an MI implementation
that surpasses a naively written Numba function. We present a
framework for systematically prompting an LLM with a base-
line algorithm and evaluating the performance of its generated
optimizations, demonstrating the potential for Al-driven code
acceleration in scientific computing.

2 Related work

This research builds upon three principal areas of study: the
computation of mutual information, performance optimization
with JIT compilers, and the application of Large Language Models
to code intelligence tasks.

Mutual Information estimation is the long-standing challenge
of accurately and efficiently estimating mutual information from

given data. Defined as
X, Y
log(p(:))] ’

16T = Epocn {108 | ey ()

it measures the pairwise relationships between random vari-
ables (continuous or discrete). The most common methods, as
reviewed by Fraser and Swinney (1986) [2] and explored in de-
tail by Kraskov, Stogbauer, and Grassberger (2004) [3], are based
on data discretization (binning) or k-nearest neighbors (k-NN)
estimators. While k-NN methods avoid the issue of bin selection,
they typically incur higher computational complexity. Binned
methods, though conceptually simpler, depend heavily on the
binning strategy for accuracy and performance, a topic exten-
sively studied by Steuer et al. (2002) [7]. Our work focuses on the
binned approach, as it is highly amenable to loop-based array
computations where Numba excels.

Information Society 2025, 6-10 October 2025, Ljubljana, Slovenia

The performance limitations of Python for numerical com-
putation led to the development of various acceleration tools,
specifically JIT compilers for Scientific Python. Numba, intro-
duced by Lam, Pitrou, and Seibert in 2015 [4], has emerged as
a leading solution by providing a decorator-based JIT compiler
that integrates seamlessly with NumPy. It allows developers to
accelerate functions containing Python and NumPy syntax, of-
ten achieving performance comparable to compiled languages.
Research and community best practices have established a set of
optimization techniques for Numba, such as managing memory
layout, ensuring type stability, and structuring loops for paral-
lelization and vectorization. This body of knowledge forms the
basis against which we evaluate the LLM’s optimization capabil-
ities. Our work differs from traditional performance tuning by
attempting to automate the discovery and application of these
techniques solely through an AI model.

The emergence of robust Large Language Models (LLMs), such
as OpenAr’s Codex (the technology powering GitHub Copilot),
has revolutionized software development. These models have
demonstrated remarkable proficiency in code generation, trans-
lation, and explanation [1]. More recently, research has shifted
towards their application in more nuanced tasks like code refac-
toring and optimization. For instance, studies have explored using
LLMs to suggest improvements for energy efficiency or to refac-
tor code for better readability. However, the specific domain of
optimizing numerical algorithms within a JIT compilation frame-
work like Numba remains relatively unexplored. While LLMs
are known to generate functional code, their ability to produce
code that is performant by adhering to the specific constraints
and best practices of a framework like Numba is an open and
compelling research question that this paper directly addresses.

3 Using LLMs to optimize existing code

To facilitate a systematic experimentation with LLM-optimized
code, we set up a novel framework. The workflow consists of the
following basic steps:

(1) Prompt the LLM with the task and context.
(2) Test the proposed optimizations against the unit tests.
(3) Benchmark the proposed implementation.

The framework is LLM-agnostic, meaning that any LLM can be
used with it. We opt for the latest and most advanced versions of
two popular LLMs, namely ChatGPT 5 and Gemini 2.5-Pro. Both
are freely available and excel in complex tasks such as reasoning
and coding.

To ensure a fair comparison between the models, both eval-
uated LLMs received the same prompt and the same context.
The prompt was "Can you make this code computationally more
efficient, this meaning it computes faster?", while the context in-
cluded the code that needed to be optimized. The initial code
used in the input already contained some Numba instructions,
however those were basic and naive. The tested code is a part of
OutRank, an open-source tool for computing cardinality-aware
feature ranking [6] and encompasses an implementation of the
mutual information estimation.

The LLM output was first tested on unit tests to ensure that
the optimizations still produced valid code and did not change
any functionalities. By testing the proposed solution before using
it for benchmarking, we are guaranteed that the code and its
output are correct, consistent, and stable. Although not part of
the framework at this stage, the output of the unit tests could

Kozamernik et al.

@njit(
'Tuple((int32[:], int32[:1))(int32[:1)",
cache=True,
fastmath=True,
error_model="numpy',
boundscheck=True,
)
def numba_unique(a):
"""Identify unique elements in an array, fast"""

container = np.zeros(np.max(a) + 1, dtype=np.int32)
for val in a:
container[val] += 1

unique_values = np.nonzero(container)[0]

unique_counts = container[unique_values]

return unique_values.astype(np.int32),
unique_counts.astype(np.int32)

@njit('Tuple((int32[:]1, int32[:1))(int32[:1)', cache=True,
fastmath=True)
def numba_unique(a):
assumes a >= 0
maxv = @
for i in range(a.size):
if al[il > maxv:
maxv = a[i]
container = np.zeros(maxv + 1, dtype=np.int32)
for i in range(a.size):
container[ali]] += 1
unique_values = np.nonzero(container)[0].astype(np.int32)
unique_counts = container[unique_values].astype(np.int32)
return unique_values, unique_counts

@njit('Tuple((int32[:]1, int32[:1))(int32[:1)"', cache=True,
fastmath=True)
def numba_unique(a):
Identify unique elements and their counts in a non-negative
integer array.
This version finds the max value in one pass to size the
container.
Assumes a >= 0@
maxv = @
if a.size > 0:
for i in range(a.size):
if ali] > maxv:
maxv = al[i]
container = np.zeros(maxv + 1, dtype=np.int32)
for i in range(a.size):
containerfal[i]] += 1
unique_values = np.nonzero(container)[0].astype(np.int32)
unique_counts = container[unique_values].astype(np.int32)
return unique_values, unique_counts

Figure 1: Examples of proposed code changes. On the top
is the initial function, followed by ChatGPTs solution and
on the bottom is the code from Gemini 2.5-Pro.

serve as additional prompts to the LLM in order to improve itself
and the code on the areas where the tests are failing.

Finally, in the last step of the framework, the resulted imple-
mentations were extensively benchmarked. The metric we were
most interested in was the time needed to compute the mutual
information for a given dataset; however, other metrics, such as
memory utilization or GPU utilization, could also be used for a
different use case. We further discuss our experimental setup in
the results section.

3.1 Reviewing the LLM optimized code

The implementations of mutual information, produced by the
selected LLMs, are remarkably similar — both in syntax and in the
naming convention. However, there are subtle differences that

Automating Numba Optimization with Large Language Models: A Case Study on Mutual Information

Implementation | Row count | Relative row count change

Baseline 182 0%
ChatGPT5 213 +17%
Gemini 2.5-Pro 262 +43%

Table 1: Row count for each of the implementations. White-
space and comments are included in the row count.

set them apart, which we will address later. Al-aided implementa-
tions have in common that they completely omit error-handling
model inherited from NumPy opting for the native Python in-
stead. Moreover, they disregard bound checks for matrix opera-
tions before hand leaving the code to crash if it goes out of bounds.
The latter is, according to the official documentation, advised for
debug purposes only and should be turned off for production, as
it slows down the code significantly. In line with the change in
error handling, both implementations prefer elementary opera-
tions over the native NumPy functions. For example, to find the
maximal value in an array, the LLM optimized code goes through
all elements in the array by the index and compares to the current
maximum instead of calling the built-in NumPy function. There
is more evidence for this preference in the code. Such changes
make the code appear much more C-like than native Python.
Whenever there is the need for typecasting, the optimized code
performs it at definition, instead of on return, which is commonly
used in the naive implementation. The two types of proposed
changes are illustrated with the code samples in Figure 1. Lastly,
both LLMs introduced additional function that performs the pre-
built grouping to avoid unnecessary allocations and relocations
in the loop. While the core techniques used for optimization are
the same for both LLMs, Gemini 2.5-Pro used Numba’s prange in
one of the main computational loops, which adds parallelization,
and makes the implementation faster on multicore machines. It
also took the use of elementary operations much further than
ChatGPT 5 — it replaced nearly all NumPy operations with native
operations, increasing the row count twice as much as ChatGPT
5 did. The numbers are reported in Table 1 In addition, Gemini
2.5-Pro implemented its own in-code bounds checks based on
elementary operations, while ChatCPT 5 did not. Contributing
to the increase in the row count is also the amount of comments.
The code review also revealed that Gemini 2.5-Pro was more
consistent in code commenting and the comments were much
more useful and informative for the developer.

4 Results

The setup for our benchmark was the following. We evaluated
four different implementations of mutual information. For the
two baselines, we used the standard and generic Sci-Kit learn
mutual information and OutRank’s basic MI-numba (that already
contains some Numba instructions to optimize the performance).
And as discussed before, two LLM optimized implementations
were tested— MI-numba-chatgpt5 and MI-numba-gemini, which
also support subsampling with a factor in range (0, 1]. For the
evaluation, the subsampling factor ranges from 0.1 to 1, which
means that no subsampling was applied.

To gauge how the performance scales with different parame-
ters of the dataset, namely the number of examples (rows) and
number of features (columns), we synthetically generated several
datasets, containing raw numerical features with non-negative
values (and varied the numbers of examples and features). The
number of features ranged from 40 up to 200 in increments of 20,

Information Society 2025, 6-10 October 2025, Ljubljana, Slovenia

Distribution of Mean Times Across Test Cases (Grouped by Features)

o
o o
o o

o
o ° °

Agorithm
= Mlnumb:
== Mlnumba-opt-g
== Mi-numba-outrank
107 == Misklearn

-chatGPT

)) & 100 120 140 160 180 200
Number of Features

Figure 2: Distribution of Mean Times Across Test Cases
(grouped by the number of features) showing the most
efficient implementation is the one optimized with Gemini
2.5-Pro.

while the number of examples ranged from 200.000 to 20.000.000
in eight logarithmic steps. For each combination, represented by
a tuple (algorithm, subsampling factor (where applicable), num-
ber of examples, number of features), we made five runs of the
code. For each run, we recorded the time to compute mutual
information using Python’s time function.

The results are shown in Figure 2. The boxes represent 25th
percentile in the bottom and 75th percentile on the top. For all
test case, the LLM optimized implementations were significantly
faster than the baselines (the naive Numba implementation of
mutual information from OutRank and the generic Sci-Kit learn
mutual information), with Gemini’s implementation being the
most efficient regardless of the number of features, number of
samples or approximation factor. The LLMs sped up the compu-
tation of mutual information for approximately 10 times, while
the difference between ChatGPT’s and Gemini’s version was
much smaller. This implies that the biggest contribution to the
speedup comes from the code changes that the two LLM opti-
mized solutions have in common. Those are primarily the pre-
built grouping, which aims to reduce in-loop allocations, and the
heavy use of elementary operations. Although parallelization in
the Gemini 2.5-Pro’s implementation still plays a role, its effect
is less significant.

To verify that the computed mutual information is consistent
with the generic implementations, namely the Sci-Kit learn imple-
mentation, we plotted the mutual information for each number
of features. We show the results in Figure 3, where we can ob-
serve that the computed mutual information is almost identical
for all implementations, regardless of the number of features
and different optimizations applied. We conclude that the code
optimized by LLMs is valid and correct.

5 Discussion

In our experiment, we used the latest and most advanced versions
of two popular LLMs, namely ChatGPT 5 and Gemini 2.5-Pro,
with Gemini 2.5-Pro being specifically targeted for coding. While
we did put two different LLMs to the test, the goal was not so
much to compare them, but to develop a framework that would
serve well for evaluating LLM-based optimizations in scientific
computing. As the new versions of LLMs and new LLMs are
periodically appearing in the market, the framework can serve

Information Society 2025, 6-10 October 2025, Ljubljana, Slovenia

le-6 MI vs. Number of Features (at 2,778,990 samples, app factor 1.0)

75

— Mi-sklearn
— Mi-numba-outrank
~—— Mi-numba-opt-chatGPT
—— MI-numba-opt-gemini

7.0

40 60 80 100 120 140 160 180 200
Number of Features

Figure 3: Computed Mutual Information for all tested im-
plementations and for various numbers of feature.

to keep improving the existing code or, on the other hand, can be
used to quantify the improvements (specifically for the coding
subdomain) in the LLMs themselves as the new versions are re-
leased. Additionally, using the framework in development phase
for scientific experiments can reduce the computational time and
computational resources needed, leading to a lower cost for the
experiments.

Focusing on the LLM aspect of the framework, the question
remains what the result of the LLM-based optimization would be,
had the context represented by the initial code not used Numba
optimizations already. Few additional experiments could be done
to explore that:

(1) Use Python code without Numba instructions and explic-
itly mention Numba in the prompt

(2) Use Python code without Numba instructions and do not
mention Numba in the prompt

(3) Task the LLM to prepare the most computationally effi-
cient implementation of mutual information in Python

6 Conclusions

In this work, we presented an initial framework for automatic
code optimization via LLM achieving a very impressive 10-fold
speedup compared to the naive baseline in the benchmarking
experiments while maintaining correctness of the code. We were
very impressed by the remarkable similarity of the code produced
by two different and independent LLMs. The proposed solutions
from both models focused on the same key areas: adding an
auxiliary function that creates the pre-built groupings to reduce
the in-loop allocations, and shifting the paradigm from native
NumPy to C-like Python code relying on elementary operations.

While the optimization process is not yet fully automatic, our
contribution outlines a possible direction for efficient use of LLMs
in scientific computing. To reach the fully automatic stage when
referring to Numba optimization, we propose the following steps
are incorporated in the framework:

(1) Use unit test output in case of failure as the next prompt
for the LLM to give it a chance to correct the code.

(2) Use the result of the benchmarking experiments as feed-
back to the LLM and iterate on the proposed optimization.

Both of these suggestions create feedback loops back to the
LLMs, thus enabling an iterative process like the one proposed in

Kozamernik et al.

Novikov et al. [5]. By comparing the outputs with the existing so-
lutions, we have shown that the LLMs maintained the correctness
when introducing optimizations.

References

[1] Mark Chen et al. 2021. Evaluating large language models trained on code.
CoRR, abs/2107.03374. https://arxiv.org/abs/2107.03374 arXiv: 2107.03374.

[2] Andrew M Fraser and Harry L Swinney. 1986. Independent coordinates for
strange attractors from mutual information. Physical review A, 33, 2, 1134.

[3] Alexander Kraskov, Harald Stogbauer, and Peter Grassberger. 2004. Estimat-
ing mutual information. Physical Review E—Statistical, Nonlinear, and Soft
Matter Physics, 69, 6, 066138.

[4] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. 2015. Numba: a llvm-
based python jit compiler. In Proceedings of the Second Workshop on the LLVM
Compiler Infrastructure in HPC, 1-6.

[5] Alexander Novikov et al. 2025. Alphaevolve: a coding agent for scientific and
algorithmic discovery. arXiv preprint arXiv:2506.13131.

[6] Blaz Skrlj and Blaz Mramor. 2023. Outrank: speeding up automl-based model
search for large sparse data sets with cardinality-aware feature ranking. In
Proceedings of the 17th ACM Conference on Recommender Systems, 1078-1083.

[7] Ralf Steuer, Jirgen Kurths, Carsten O Daub, Janko Weise, and Joachim Sel-
big. 2002. The mutual information: detecting and evaluating dependencies
between variables. Bioinformatics, 18, suppl_2, S231-5240.

https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374

	Abstract
	1 Introduction
	2 Related work
	3 Using LLMs to optimize existing code
	3.1 Reviewing the LLM optimized code

	4 Results
	5 Discussion
	6 Conclusions

