
CO2 Monitoring for Energy-Efficient Workloads in Kubernetes:
A Data Provider for CO2-Aware Migration

Ivo Hrib
ivo.hrib@gmail.com
Jožef Stefan Institute
Ljubljana, Slovenia

Jan Šturm
jan.sturm@ijs.s

Jožef Stefan Institute
Ljubljana, Slovenia

Oleksandra Topal
oleksandra.topal@ijs.si
Jožef Stefan Institute
Ljubljana, Slovenia

Maja Škrjanc
maja.skrjanc@ijs.si
Jožef Stefan Institute
Ljubljana, Slovenia

Abstract
We present a CO2 monitoring component developed within the
FAME project’s Energy Efficient Analytics Toolbox. The service
continuously collects power usage for containerized workloads in
Kubernetes via Kepler and fuses it with regional electricity-grid
carbon intensity (e.g., ElectricityMaps) to compute per-workload
CO2 emission rates in g s−1. Its primary role is to store accurate,
timestamped emission values and expose them through light-
weight APIs and an optional time-series database (TimescaleDB).
It acts as a data provider consumed by external orchestration
services, enabling CO2-aware migration strategies across clusters
and regions.

Keywords
CO2 monitoring, Kubernetes, energy efficiency, carbon-aware
computing, time-series storage, ElectricityMaps, Kepler

1 Introduction
Data centers are a significant contributor to global electricity
demand. Beyond advances in hardware efficiency and renewable
energy procurement, intelligent orchestration of workloads can
reduce emissions by aligning computation with cleaner energy
availability. A prerequisite for such carbon-aware orchestration is
reliable and accessible measurements of workload-level emissions.

This paper introduces a CO2 monitoring and storage service
designed for Kubernetes environments. The service ingests pod/-
container power data from Kepler [5], combines it with regional
grid carbon intensity from ElectricityMaps [2], computes instan-
taneous emission rates, and persists the resulting time series.
Unlike optimization or migration tools, this component deliber-
ately restricts its scope: it provides measurements and exposes
them via stable APIs for later consumption.

By decoupling measurement from decision-making, we ensure
modularity and interoperability. External orchestrators such as
the ATOS migration service in FAME D5.4 [3] can consume these
metrics to implement CO2-aware migration strategies without
needing to handle the intricacies of measurement or data storage.

Our contributions are threefold: (i) a minimal but complete
architecture for per-workload CO2 measurement and storage

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this
work must be honored. For all other uses, contact the owner/author(s).
Information Society 2025, Ljubljana, Slovenia
© 2025 Copyright held by the owner/author(s).

in Kubernetes; (ii) a schema and REST API design that facili-
tates external consumption; and (iii) scenario-based evaluations
demonstrating the potential of CO2-aware workload migration.

Further testing will take place, utilizing real measurements
andmigrations fromwithin the FAME framework, as to showcase
the service’s precise final capabilities, as opposed to benchmark
tests.

1.1 Key-Idea
The key idea of our approach is to compute container-level CO2
emissions by combining two complementary data sources: (i)
instantaneous power consumption estimates from Kepler, and (ii)
regional grid carbon intensity values from ElectricityMaps.

First, Kepler provides pod- and container-level telemetry in
the form of estimated power usage 𝑃 (𝑡), expressed in watts. This
power signal is derived from eBPF-based kernel observations
and model-based inference all provided by Keplers data source.
Second, ElectricityMaps exposes a carbon intensity factor 𝐼 (𝑡),
expressed in g kW−1 h, corresponding to the bidding zone of the
node on which the container executes.

We align these two signals in time and compute instantaneous
emission rates by:

𝐸 (𝑡) = 𝑃 (𝑡) · 𝐼 (𝑡)
3600

where 𝐸 (𝑡) is the CO2 emission rate in g s−1, 𝑃 (𝑡) is container
power in watts (J s−1), and the division by 3600 converts the
intensity factor from per-kWh to per-second units.

These per-container emission rates are then aggregated into a
time series, optionally persisted in TimescaleDB, and exposed via
a REST API. This composition allows downstream orchestration
services to reason about the carbon impact of workloads at fine
temporal and spatial granularity, enabling CO2-aware migration
strategies.

2 Background and Related Work
Carbon-aware computing. Previous studies highlight the ben-
efits of shifting workloads spatially or temporally to align with
greener electricity supplies [4]. Such strategies require fine-grained,
accurate emissions signals.

Power telemetry in Kubernetes. Kepler provides container-
level power and energy estimates using eBPF-based telemetry
and inference models [5, 1]. This service builds upon Kepler,
avoiding duplication of low-level sensor logic.

Grid carbon intensity. ElectricityMaps aggregates near real-
time and historical carbon intensity signals per bidding zone [2].



Information Society 2025, 6–10 October 2025, Ljubljana, Slovenia Hrib et al.

These signals, expressed in gCO2/kWh, provide essential context
for translating power usage into CO2 emissions.

Time-series storage. TimescaleDB extends PostgreSQL with
hypertables and compression well-suited to telemetry workloads
[6]. Our design can optionally persist emissions in TimescaleDB,
but the service remains functional in buffer-only mode.

This paper positions our service as a foundational measure-
ment substrate for carbon-aware orchestration in Kubernetes
environments.

3 Design and Implementation
3.1 Architecture
The component runs as a Kubernetes deployment. Workers col-
lect power metrics from Kepler, fetch grid intensity values, com-
pute emissions, and either persist results in TimescaleDB or serve
them from memory. A REST API provides read-only access to
historical and recent emissions.

Figure 1: System architecture

3.2 Data Model
Each emission record is structured as a tuple that captures both
workload identifiers and measurement values. This schema is
designed to balance expressiveness with minimal storage over-
head, while ensuring compatibility with external orchestration
services.

• ts (timestamp, UTC): the precise moment when the mea-
surementwas taken, enabling time-series alignment across
nodes and regions.

• namespace, pod, container: identifiers for locating the
workload within the Kubernetes hierarchy, which is es-
sential for container-level granularity and reproducibility.

• node, region, country_iso2: metadata that ties the con-
tainer execution to its physical and geographical context.
This supports carbon-aware decisions that depend on grid
intensity differences across regions.

• power_w, energy_j: raw telemetry provided by Kepler,
describing both instantaneous power and accumulated
energy consumption.

• intensity_g_per_kwh: regional grid carbon intensity re-
trieved from ElectricityMaps, serving as the multiplier that
translates energy into emissions.

• co2_g_per_s: the computed emission signal, representing
the core value consumed by orchestrators.

• source_version: versioning tag for tracking provenance
of measurements and external data dependencies.

This schema ensures that each record is self-contained, inter-
pretable across clusters, and suitable for longitudinal analysis in
time-series databases.

3.3 API Endpoints
The service exposes a lightweight REST API, designed to be eas-
ily consumed by external orchestrators or monitoring pipelines.
The API emphasizes read-only access to maintain reliability and
auditability.

• GET /api/containers: returns the set of containers cur-
rently monitored by the service, allowing orchestrators to
discover available emission signals.

• POST /api/emissions: fetches recent emission values in
bulk. This endpoint is optimized for dashboards or moni-
toring agents that need timely updates with low overhead.

• POST /api/emissions/by-container: queries the emis-
sion history of a specific container, useful for fine-grained
migration or scheduling decisions.

• GET /api/schema: provides the data schema including
units and field definitions. This enables clients to validate
their assumptions and facilitates long-term interoperabil-
ity across versions.

By standardizing access patterns, the API makes it possible
for external services to reliably retrieve emissions information
without depending on internal implementation details.

4 Evaluation
We now present evaluations based on benchmarks and scenario
analyses conducted in the FAME project [3]. The goal was to
assess whether exposing real-time CO2 signals can enable mean-
ingful emission reductions when coupled with migration strate-
gies.

4.1 Benchmark Test
In a simple benchmark using busybox, a lightweight Linux con-
tainer, the optimal CO2 emissions achieved were significantly
lower than the mean observed values. The key performance indi-
cator (KPI) was defined as a 200% improvement, corresponding
to a 66.6% reduction compared to baseline. Results show that this
threshold can be achieved and often surpassed. The baseline is,
for lack of a better, metric defined as the mean of emissions across
all tracked countries with available resources for migration.

Figure 2: Small timeframe emissions of a benchmark Busy-
box for testing purposes



CO2 Monitoring in Kubernetes Information Society 2025, 6–10 October 2025, Ljubljana, Slovenia

4.2 Scenario-Based Evaluation
Scenarios simulate workload migrations across subsets of Euro-
pean countries. Each scenario randomly selects 4–7 countries
from a pool of 28, representing constrained deployment options.
The system attempts to minimize emissions within these subsets.
Results include:

• Scenario 1 (IS, CZ, BG, RO, AT, SE): 88.2% ± 2.1% reduction.
• Scenario 2 (DE, PL, GR, LV): 72.8% ± 5.6% reduction.
• Scenario 3 (GB, LT, SI, DE, AT, GR): 78.0% ± 1.7% reduction.
• Scenario 4 (ES, FR, GB, PL, HU, LT, SE): 89.6% ± 1.1% (best
case).

• Scenario 5 (LV, ES, HU, LT): 32.4% ± 12.7% (worst case).
• All Countries: 87.7% ± 1.7% reduction (ideal case).

Figure 3: Plot of average reductions per scenario

Across all scenarios, at least one migration was executed per
window, with an average emission reduction of 74.8%. These
results confirm that even under limited availability, CO2-aware
migration strategies yield substantial benefits.

4.3 Insights
The best-performing scenario demonstrates that careful selec-
tion of even a limited number of regions can approach the ef-
fectiveness of full global availability. Conversely, the poorest-
performing scenario illustrates the dependency on geographic
flexibility. Overall, results validate that exposing reliable CO2
signals through our service empowers orchestration layers to
meet or exceed environmental KPIs.

5 Limitations and Future Work
The reported emissions are estimates subject to the accuracy of
both Kepler’s models and grid intensity data. As a result, the
benchmark tests previously performed may not fully capture all
possible scenarios, as grid dependency may sometimes force sub-
optimal migrations in the CO2-system as per resource availability.
Resolution is limited by the update frequency of intensity sources,
and storage requirements increase with sampling granularity.

Future work will focus on service options to adjust granularity
and tackle scalability issues within the service.

6 Conclusion
We presented a Kubernetes-native CO2 monitoring service that
provides real-time emissions data through stable APIs. Evalua-
tions demonstrate that when coupled with migration strategies,

these metrics enable significant emission reductions, often sur-
passing KPI thresholds. Future work will include integration
with more compute-intensive workloads, multi-source intensity
aggregation, and cryptographic provenance for auditability.

Acknowledgements
This work was supported by the FAME project under the Euro-
pean Union’s Horizon Europe programme. We thank the Kepler
community and colleagues who contributed feedback during
testing.

References
[1] eBPF Foundation. [n. d.] Ebpf. Accessed 2025-09-05. https://ebpf.io/.
[2] Electricity Maps. [n. d.] Electricity maps api documentation. Accessed 2025-

09-05. https://www.electricitymaps.com/.
[3] FAME Consortium. 2025. Energy efficient analytics toolbox ii. Deliverable

D5.4. (2025).
[4] Google. 2020. Carbon-intelligent computing at google. Whitepaper/blog

overview; Accessed 2025-09-05. https://www.google.com/.
[5] Kepler Project. 2024. Kepler: kubernetes-based efficient power level exporter.

Accessed 2025-09-05. https://github.com/sustainable-computing-io/kepler.
[6] Timescale Inc. [n. d.] Timescaledb: postgresql for time-series & events. Ac-

cessed 2025-09-05. https://www.timescale.com/.

https://ebpf.io/
https://www.electricitymaps.com/
https://www.google.com/
https://github.com/sustainable-computing-io/kepler
https://www.timescale.com/

	Abstract
	1 Introduction
	1.1 Key-Idea

	2 Background and Related Work
	3 Design and Implementation
	3.1 Architecture
	3.2 Data Model
	3.3 API Endpoints

	4 Evaluation
	4.1 Benchmark Test
	4.2 Scenario-Based Evaluation
	4.3 Insights

	5 Limitations and Future Work
	6 Conclusion
	Acknowledgements

