
Explaining Temporal Data in Manufacturing using LLMs and
Markov Chains

Jan Šturm
jan.sturm@ijs.si

Jožef Stefan Institute
Jožef Stefan International

Postgraduate School
Ljubljana, Slovenia

Maja Škrjanc
maja.skrjanc@ijs.si
Jožef Stefan Institute

Jožef Stefan International
Postgraduate School
Ljubljana, Slovenia

Oleksandra Topal
oleksandra.topal@ijs.si
Jožef Stefan Institute
Ljubljana, Slovenia

Inna Novalija
inna.koval@ijs.si

Jožef Stefan Institute
Ljubljana, Slovenia

Dunja Mladenić
dunja.mladenic@ijs.si
Jožef Stefan Institute

Jožef Stefan International
Postgraduate School
Ljubljana, Slovenia

Marko Grobelnik
marko.grobelnik@ijs.si
Jožef Stefan Institute
Ljubljana, Slovenia

Abstract
Monitoring and understanding complex industrial processes from
high-dimensional IoT sensor data remains a significant challenge.
While advanced modeling techniques like Hierarchical Markov
Chains can abstract raw data, their outputs are often difficult for
domain experts to interpret, creating a gap between data-driven
insights and operational management. Existing explainability
methods often focus on feature importance rather than providing
holistic, semantic descriptions of system states. This paper in-
troduces a framework that bridges this gap by transforming the
abstract states of a process model into intuitive, human-readable
concepts. The methodology leverages the StreamStory (Hier-
archical Markov Chain) tool approach to generate behavioral
profiles based on log-likelihood calculations within sliding tem-
poral windows. StreamStory states are summarized using an
LLM to assign semantic labels and descriptions. This approach re-
duces the initial reliance on domain experts for analysis, aids the
understanding of complex system dynamics, and provides a trans-
parent foundation for identifying both normal and anomalous
operational patterns. The result is a more interpretable represen-
tation of industrial processes, facilitating improved predictive
maintenance and operational efficiency.
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1 Introduction
The proliferation of Internet of Things (IoT) sensors in industrial
environments has generated vast streams of multivariate time-
series data. While this data holds immense potential for process
optimization and predictive maintenance, its complexity often
surpasses human cognitive capacity. Tools like StreamStory [6]
have emerged to model these complex systems using Hierarchical
Markov Chains, abstracting raw data into a more manageable
set of states and transitions. However, a fundamental challenge
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persists: a disconnect between the model’s statistical outputs and
the experiential knowledge of domain experts.

The motivation for this work stems from this challenge. Do-
main experts, who possess invaluable implicit knowledge of a
system, often struggle to interpret the statistical outputs of pro-
cess models. Conversely, data scientists may identify patterns
that lack the necessary operational context for effective action.
Presenting experts with a graphical representation of states and
transitions is a step forward, but it does not fully bridge the
semantic gap. They may not understand what a specific state
represents in the physical world or why a particular transition is
significant. This leads to a bottleneck where valuable data-driven
insights are not fully utilized, hindering efforts to improve system
management and efficiency.

To address this, the paper proposes a methodology that en-
hances the interpretability of hierarchical process models. This
approach creates a new layer of understanding that is accessible
to operational personnel without requiring deep data science
expertise. By translating abstract model states into meaningful,
semantically rich descriptions, it provides a tool that allows the
system’s behavior to be understood, validated, and ultimately,
better managed. This work introduces a methodology to auto-
matically generate these descriptions, moving from complex data
to clear, actionable insights.

2 Related Work
The field of time-series anomaly detection has evolved from in-
terpretable statistical models like ARIMA and classical machine
learning such as Isolation Forest to high-performance deep learn-
ing architectures including LSTMs, Transformers, and Autoen-
coders [5, 4, 7]. While these advanced models excel at pattern
recognition, their complexity necessitates post-hoc XAI tools like
LIME and SHAP to explain their decisions, which are limited to
providing low-level feature attributions [1].

Recent work also demonstrates the utility of Hidden Markov
Models (HMMs) for anomaly detection, for instance, by designing
active search strategies to locate an evolving anomaly among
multiple processes [2], or by learning normal temporal dynamics
from remote sensing data to detect, localize, and classify crop-
related deviations [3]. However, while effective for detection, the
abstract nature of HMM states can be difficult for domain experts
to interpret. The present work addresses this by transforming
the state sequence into a multi-scale behavioral profile, which
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enables a Large LanguageModel (LLM) to generate rich, semantic
explanations of system behavior.

This approach innovates by first classifying each multivariate
data point into a state within a pre-built Markov Chain model
and then calculating log-likelihoods from the state sequence to
form a multi-scale representation. Crucially, this representation
allows for the recognition of regular system behavior and vari-
ous anomalies. By analyzing the statistical distribution of these
profiles—identifying dense regions of regular behavior and sparse
outliers corresponding to anomalous states—an LLM can then
assign rich, human-readable descriptions, connecting abstract
data to operational knowledge.

3 Methodology
The framework is designed to post-process models generated by
the StreamStory system. Figure 1 outlines this multi-stage pro-
cess, which begins with the statistical features from the Markov
model and culminates in semantically enriched explanations of
system behavior. The core of this methodology is the transforma-
tion of abstract machine states into meaningful concepts using a
combination of statistical feature engineering and LLM interpre-
tation. The process focuses on creating robust representations
of system behavior and leveraging an LLM to translate these
representations into human-understandable language.

Figure 1: Proposed methodology for identifying and ex-
plaining normal and anomalous operational profiles.

3.1 Log-Likelihood Score Calculation
The input to the pipeline is a pre-existing Hierarchical Markov
Chain model of an industrial process, which includes a history
of state transitions over time. The first step is to create a rich
feature representation that captures the system’s dynamics. A
sliding window (Figure 2) approach moves across the sequence
of historical state transitions. For each window of a given size,
a single feature is calculated: the log-likelihood of that specific
sequence of transitions occurring. This score is calculated by
summing the log-transformed transition probabilities for each
step in the sequence, as defined by the underlying Markov model.
The score effectively quantifies how "normal" or "expected" a
particular sequence of behavior is according to the learned model.
Highly probable sequences yield higher log-likelihood scores
(closer to zero), while rare sequences result in large negative
scores.

3.2 Behavior Profile Construction
To capture dynamics over multiple time scales, several sliding
windows of different sizes are used simultaneously. The log-
likelihood score calculated from each window is concatenated to
form a single feature vector for each time step. This multi-scale
vector, termed a behavior profile, serves as a rich representation of
the system’s dynamics at that moment, encapsulating both short-
term and longer-term patterns. This profile is a crucial output,
as it provides a quantitative basis for distinguishing between
different modes of operation.

Figure 2: Sliding windows of different lengths are applied
to a sequence of system states over time. A log-likelihood
score is then calculated for the sequence within each win-
dow.

3.3 Ranking System Behavior via Anomaly
Scoring

Following the construction of the behavior profiles, their distri-
bution is analyzed to identify distinct operational patterns. An
unsupervised density-based approach is employed to score each
profile’s typicality. The Isolation Forest algorithm is used for
this purpose because it does not assume a specific data distri-
bution and excels at identifying outliers in a high-dimensional
space. Profiles that are common and lie in dense regions of the
feature space receive a high score, corresponding to normal be-
havior. Conversely, profiles that are rare and isolated receive a
low score, flagging them as anomalous. This produces a continu-
ous spectrum of normalcy, allowing for a ranked analysis of all
operational events.

3.4 LLM-Powered State Naming and
Interpretation

To translate abstract states into meaningful concepts, an LLM is
utilized. For each granular state discovered by the StreamStory
model, its statistical profile (e.g., sensor value distributions) and
context about the machine type were formatted into a descriptive
prompt. The LLM was then tasked with generating a concise,
intuitive name for each state (e.g., "Peak Production - High Flow
and Heat"). This process, conducted once per model, creates
a semantic layer that is then used to interpret the sequences
associated with the highest-ranked normal and lowest-ranked
anomalous events.

This approach offers two key advantages. First, the LLM-
generated names provide a layer of transparency, offering an
immediate hypothesis about what each abstract state represents.
Second, it shifts the role of the domain expert from the arduous
task of initial interpretation to the more efficient step of validat-
ing or refining the LLM-generated labels, accelerating the process
of gaining actionable insights.

4 Experiment
To validate the proposed framework, an experiment was con-
ducted using a real-world industrial dataset from an oil refinery
pump. This section details the dataset, implementation, and re-
sults.

4.1 Dataset
The experiment was conducted on a proprietary dataset from
the oil and gas sector, spanning approximately one month of
operation (March-April 2017) with a 15-minute data resolution.
The multivariate time-series data was collected from a suite of IoT
sensors monitoring a pump’s core functions. Key measurements
included fluid flow rate (Kg/h), suction and discharge pressure
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(Kg/cm2), and temperatures monitoring the process fluid and
mechanical components (degC).

4.2 Implementation Details
The methodology was implemented in a Python environment.
The underlying Markov Chain model was built using the entire
historical dataset provided, as the goal is to interpret the com-
plete, learned dynamics of the process rather than to perform
a predictive task that would require a train/test split. Behavior
profiles were constructed using sliding windows of multiple sizes
(3, 5, 7, and 10 steps). The resulting profiles were analyzed using
the Scikit-learn implementation of Isolation Forest. The ‘con-
tamination‘ parameter was set to 5% for the primary analysis,
a common heuristic for industrial processes. State descriptions
were generated using the GPT-4o model, which was prompted
with the statistical profiles of each state to generate intuitive
names.

4.3 Experimental Results and Discussion
The application of the framework yielded a ranked list of op-
erational events, characterized by the Isolation Forest decision
score. This score serves as a robust indicator of how typical or
anomalous a given time window is. Table 1 details the top five
most anomalous events identified. These events are characterized
by scores that are more than 3 standard deviations below the
mean, signifying extreme statistical rarity.

The true explanatory power of the method is revealed when
the abstract state sequences are translated into their LLM-generated
names. For instance, the most anomalous event culminates in a
sequence of “... -> ‘Startup or Shutdown Transition‘ -> ‘Machine
Idle or Shutdown‘ -> ‘Startup or Shutdown Transition‘.” This pro-
vides a clear, human-readable narrative of the pump entering a
period of instability and stoppage. This is a marked improvement
over black-box models that simply flag a time point as anomalous
without providing a temporal context for the "why." An engineer,
seeing this semantic sequence, can immediately infer a poten-
tial cause for investigation, such as an attempted restart or a
stuttering shutdown process.

Table 1: Top 5 Most Anomalous Events

Rank Timestamp Score (Std.) Final State (LLM Name)

1 2017-04-03 14:30 -0.096 (-3.88) Startup...Transition
2 2017-03-28 10:00 -0.071 (-3.45) Startup...Transition
3 2017-03-30 00:00 -0.066 (-3.35) High-Flow, Cool Op.
4 2017-04-03 12:30 -0.061 (-3.26) Machine Idle
5 2017-04-03 15:00 -0.056 (-3.18) Weekday Low-Flow...

Conversely, Table 2 presents the five most normal events,
which have high positive scores. Their sequences reveal a stable
operational loop between states like “Peak Production,” “Week-
end Peak-Load Production,” and “Extreme Temperature Peak
Performance.” This recurring pattern defines the pump’s healthy
operational "heartbeat," providing a data-driven "golden stan-
dard" for normal behavior under demanding conditions. This
semantic understanding is crucial for operators, as it validates
that the system is performing as expected.

To ensure the robustness of the findings, a sensitivity analysis
was conducted on the Isolation Forest ‘contamination‘ parameter,
testing values of 1%, 5%, and 10%. While the number of points

Table 2: Top 5 Most Normal Events

Rank Timestamp Score (Std.) Final State (LLM Name)

1 2017-03-23 22:00 0.192 (1.22) Weekend Peak-Load
2 2017-03-31 06:00 0.192 (1.22) Peak Production
3 2017-04-01 00:00 0.191 (1.20) Peak Production
4 2017-03-31 23:30 0.191 (1.19) Weekday Peak Perf.
5 2017-03-31 07:30 0.190 (1.17) Weekday Peak Perf.

labeled ’Anomalous’ changed as expected, the relative ranking of
the most extreme events remained highly consistent, confirming
that the core findings are not sensitive to this hyperparameter.

The claims in this paper are demonstrated on a single, repre-
sentative dataset. While the framework is designed to be general,
further studies on diverse industrial processes are required to
fully validate its broader applicability. The LLM-generated labels
were not validated in a formal user study with domain experts;
such a study is a valuable next step.

5 Conclusion
This paper presented a complete, self-contained framework for
increasing the interpretability of complex industrial process mod-
els. By creating behavior profiles of system states and using an
LLM to assign semantic names, the approach successfully trans-
lates abstract data analysis into practical domain knowledge. The
method provides a robust process for ranking and explaining
individual operational events in a transparent manner, as demon-
strated on a real-world industrial dataset. This work establishes
a strong foundation for a new type of explainability, moving
beyond feature importance to provide narrative, context-rich
descriptions of system dynamics.

The representation of system dynamics as behavior profiles
opens a wide array of possibilities for future research. The cur-
rent work successfully identifies and presents the raw temporal
sequences leading to key events. Future work will focus on apply-
ing formal pattern mining techniques to automatically discover
recurring and significant sequential patterns within these events.
Such an analysis could reveal if distinct "families" of anoma-
lous behavior exist, each with its own characteristic temporal
signature. This promises a more nuanced description of system
operations and provides a stronger foundation for developing
targeted predictive maintenance strategies. Finally, to address
current limitations, two key areas will be prioritized. First, formal
user studies with domain experts will be conducted to validate
the utility and accuracy of the LLM-generated explanations, mov-
ing beyond the promising initial results. Second, the framework’s
generalizability will be tested through broader empirical evalua-
tion across diverse industrial sectors and sensor types to boost
its credibility and applicability.
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