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Abstract
Ski jumping performance is shaped by both athlete technique

and environmental conditions, with factors such as wind speed,

wind direction, and ski orientation playing a critical role in deter-

mining jump trajectories. Accurate modeling of these trajectories

is challenging due to dynamic and time-dependent nature of

the system. In this work, we introduce a dataset of measured

ski jumps and present a state-space modeling framework that

captures the evolution of jumps under varying conditions. The

model parameters are estimated using a ridge regression ap-

proach, enabling us to predict trajectories from initial states and

wind sensor inputs. We evaluated the predictive performance of

the model through leave-one-out cross-validation and analyzed

its stability, showing that the approach can generate realistic tra-

jectories with reasonable accuracy. To complement the modeling

results, we developed an interactive web application that allows

users to explore both recorded and simulated jumps, adjust envi-

ronmental factors, and visualize their effects through animations.

Together, the dataset, modeling framework, and the application

offer a foundation for further research in ski jump analysis and

provide an accessible tool for exploring the influence of external

conditions on performance.
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1 Introduction
Ski jumping is a sport strongly influenced by both athletic tech-

nique and environmental conditions. Factors such as wind speed,

wind direction, and different ski angles affect the trajectory and

final distance of a jump, making accurate prediction a challeng-

ing problem. While statistical models and simulations have been

applied in sports research for some time, many approaches sim-

plify the problem and do not fully capture the dynamic evolution

of the jump over time [11].

Recent advances inmachine learning have introducedmethods

capable of modeling temporal systems with greater fidelity. In

particular, state-space models provide a mathematical framework

for representing hidden internal states that evolve over time

in response to external input. This makes them well-suited for
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modeling ski jumps, where environmental factors determine

performance [9].

In this paper, we present a ski jump dataset together with a

state-space model trained to predict jump trajectories based on

changing environmental conditions. Themodel is estimated using

a least squares approach and demonstrates how inputs such as

wind and ramp adjustments influence the resulting jump. Beyond

the modeling framework, we also developed an application that

allows general users to interact with the data, run simulations,

and visualize jump trajectories through animations.

Beyond methodological interest, accurate prediction of ski

jumps can improve athlete safety by anticipating risky condi-

tions, support planning of hill design or enlargement, and con-

tribute to fairer competitions through a better understanding of

environmental effects.

The remainder of the paper is as follows. Section 2 presents

the handling of received data. Next, the proposed methodology

is described in Section 3. The project results are presented in

Section 4. We discuss the results in Section 5 and conclude the

paper in Section 6.

2 Modeling Framework and Dataset
This section describes the handling of data, focusing on state-

space models and our data processing.

2.1 State-Space Model
State-Space Models (SSMs) are a family of machine learning algo-

rithms designed to capture and predict the behavior of dynamic

systems by describing how their inner states change over time.

Instead of only looking at past inputs and outputs, SSMs explic-

itly model the underlying dynamics, making them well-suited for

sequential data. In state-space modeling, the objective is to iden-

tify the minimal set of system variables required to completely

describe the system. These fundamental variables are referred to

as the state variables. At any given time, the state of the system

can be represented by a state vector, whose components corre-

spond to the values of the respective state variables. SSMs are

designed to predict both the manner in which inputs are reflected

in the system’s outputs and the evolution of a system’s internal

state over time and in response to specific inputs [2].

2.2 Least squares method
The least squares method is a regression technique that is used to

determine the line that best fits a given set of data. It minimizes

the sum of the squared differences between the observed data

and the corresponding values implied by the regression func-

tion. Each data point reflects the relationship between a known

independent variable and an unknown dependent variable [7].

https://doi.org/10.70314/is.2025.sikdd.30
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To enhance the model, we incorporated ridge regression (L2

regularization), which helps to reduce overfitting during model

training [12].

2.3 Data Processing
For our project, we used 223 CSV files, each containing the data

of a jump, measured on the flying hill of Gorišek brothers in Plan-

ica, Slovenia. Each contains 17 columns (’Position’, ’Height
above ground’, ’Time’, ’X’, ’Y’, ’Z’, ’Opening Angle’,
’Stalling Angle Left’, ’Stalling Angle Right’, ’Roll
Angle Left’, ’Roll Angle Right’, ’Yaw Angle Left’, ’Yaw
Angle Right’, ’Speed hor.’, ’Speed vert.’, ’Speed
resulting’, ’WindTime|WindName|WindSpeed|Wind...’) and
the number of rows corresponding to the length of the jump. Data

are recorded for every meter of air distance from the take-off

point.

The data required some pre-processing before it could be used

for training the model.

The column WindTime|WindName|WindSpeed|... combinedmul-

tiple attributes separated by ’|’. Data from 12 sensors, each mea-

suring six wind characteristics, were expanded into 12 × 6 = 72

columns, one per sensor–feature pair (sensor_feature).

Position - air distance from the take-off point in meters. Be-

gins with a negative value, which represents the distance

from the starting point to the take-off point. In ski jump-

ing, the starting point is adjusted according to the wind

conditions, so this value is not constant.

Height above ground - height above ground in meters.

Time - time of the jump in seconds from the start of the

jump.

X, Y, Z - coordinates of the jumper in a 3D space in meters.

The X axis is aligned with the hill direction, the Y axis is

across the hill, and the Z axis is vertical. The take-off point

is (0, 0, 0) as shown in Figure 1

Opening Angle - angle between the skis in degrees.

Stalling Angle Left, Stalling Angle Right - angle between
the chord line of the left/right ski and the horizontal plane

in degrees.

Roll Angle Left, Roll Angle Right - angle of the left/right
ski around its longitudinal axis relative to the horizontal

plane in degrees.

Yaw Angle Left, Yaw Angle Right - angle between the

left/right ski and the horizontal plane in degrees.

(angles are shown in Figure 2)

Speed hor., Speed vert., Speed resulting - horizontal, ver-

tical, and the resulting speed of the athlete in km/h [13].

Figure 1: 3D model of Ski jump in Planica with added co-
ordinates [10, 1]

Figure 2: Different angles affecting the jump

The wind features are as follows:

WindTime - time of the wind measurement in the same for-

mat as the Time column itself. Since wind measurements

are recorded less often, the wind values are applied to the

most recent jump measurement and then just repeated

until a new wind measurement is available. Since the wind

is represented by a nonlinear function, it would be hard to

capture its movements with interpolation, so we decided

to drop this column.

WindName - name of the sensor (Wi for 𝑖 = 1, . . . , 12)

WindSpeed - resulting speed of the wind in km/h

WindSpeedTangent - speed of the wind tangent measured

along the x axis (hill direction) in km/h

WindTurbulence - vertical speed of the wind turbulence in

km/h

WindSpeedCleanTan - wind speed tangent with

turbulence removed in km/h

WindSpeedCross - speed of the wind measurement along

the y axis across the hill in km/h

There are 12 wind sensors spread across the ski jump hill. To

help with the analysis, we separated the jump section of the hill

into 3 zones. The first zone contains wind sensors 1 to 4, the

second zone contains sensors 5 to 8, and the third zone contains

sensors 9 to 12 [11].

During processing, we also removed some ski jumps that were

incomplete or had corrupted data, so the final dataset contained

around 200 ski jumps.

3 Methodology
This section describes our research methodology. We first present

different variations of the SSM that we tested for the ski jump

simulation, followed by describing our model and how it predicts

the jumps. Finally, we present the description of our ski jump

animation app.

3.1 Different modeling approaches
In addition to pure SSM, we considered different approaches

for modeling ski jumps that included classical physics-based

models, but the data are not sufficient to accurately capture all the

forces acting on the jumper. We also tried a hybrid approach that

combined SSM and Physics-informed Neural Networks (PINNs

[14]), where the SSM would provide a baseline prediction and

the PINN would learn to correct any discrepancies, taking into

account physical properties of the system, such as the mass of

the pilot, the properties of the wind, and gravitational force [4].



Ski Jumping Simulation Information Society 2025, 6–10 October 2025, Ljubljana, Slovenia

These parameters are included in the equations of motion and

added to the total loss function. So, the model prefers solutions

that are consistent with the laws of physics. This turned out

to be less effective than a pure SSM approach, but the reason

exceeds the purpose of this paper. More about errors and models’

comparison is given in Section 4.1.

3.2 Ski jump prediction model
In order to fit our data to the SSM, we stored the data in each

file in three vectors. The main vector contains states or state

variables of the system, which in our case are the X, Y, and Z

coordinates, jumper velocities, and all angles (opening, stalling,

roll, and yaw) [6].

The observation vector contains the measured outputs of the

system, which in our case are the X, Y, and Z coordinates and

height above ground. The controls contain the external inputs

to the system, which in our case are the wind measurements

from all the sensors that are averaged over each zone and feature

(speed, tangent, cross and turbulence).

We then used ridge regression to estimate the matrices A, B,

C and D of the SSM, as shown in Figure 3, where we minimized

the computed values from the current and previous values and

the next time-stamped values. Thus, matrix A computes the next

state from the current state, B computes the next state from

the current control, C computes the next observation from the

current state, and D computes the next observation from the

current control. We then use recursion to predict the next state

from the prediction of the previous state and the current control,

to get the full simulated jump. This allows us to predict the jump

trajectory based on the environmental conditions and the starting

state of the jumper [9].

Figure 3: Schema of SSM matrices [3]

3.3 Ski jump animation app
To make our results accessible beyond the research setting, we

developed an interactive web application using Shiny for Python

[8]. The application serves as a front-end to the trained state-

space model and allows users to explore ski jump simulations

under varying environmental conditions or just to observe differ-

ent measured ski jumps. Firstly, through a set of input controls,

users can adjust factors such as wind speed, wind directions, or

different ski angles, and the application instantly updates the

predicted jump trajectory. Secondly, users can simply explore

random jumps from the provided dataset or upload their own

CSV file of measured jumps, as long as it includes the columns

described in Section 2.3.

The application presents the results as an animated visualiza-

tion of the ski jump, showing the full trajectory and the final dis-

tance. In this way, the application functions both as an analytical

tool, helping to test how different conditions affect performance,

and as an educational resource that makes the mechanics of ski

jumping easier to understand for a wider audience. It is available

online.
1

4 Main results
In this section, we present the results of our simulations. Firstly,

we present a statistical comparison of all the models, followed

by a precise analysis of our predictions.

4.1 Models’ error
In order to evaluate different models, we first had to define a

metric to measure the prediction error. Since actual and sim-

ulated jumps are represented with x, y, and z coordinates but

are measured at different time stamps and can contain a differ-

ent number of measurements, we had to find a way to compare

them. We first tried to project the shorter trajectory on to the

other one and compute the distance between the original and

the projection, but this method turned out to be computationally

expensive. So we decided to compute the distance between the

actual and the simulated jumps by interpolating both jumps. The

new measurements contain the start and end point and all the

ones, where x reaches a natural value. We then compute the error

as the norm of the difference between the two jumps. And after

one of the jumps ends, we just add the distance from the end of

the shorter jump to the end of the longer jump to the error. In

this way, we penalize the model for not being able to predict the

correct length of the jump.

Since we had a limited number of jumps, we used leave-one-

out cross-validation to evaluate the models. For each jump, we

trained the model on all other jumps and then simulated the

left-out jump. We then calculated the average error between the

actual jump and the simulated jump for both the training set and

the test set, as shown in Figure 4.

In the process of developing our ski jump prediction model,

we evaluated several variations to determine the most effective

approach. We compared the performance of a pure SSM with

a hybrid model that combined SSM with PINN. The pure SSM

demonstrated superior predictive accuracy, probably due to its

ability to directly model the temporal dynamics of ski jumps

without the added complexity of PINNs. We also experimented

with different configurations of the SSM, including using all

available wind sensor data versus an averaged value of the zone.

When we used all sensors, the average error for each point (in the

training data is 1.67 m and in the test data is 1.89 m), while when

we averaged the sensors over the zones, the error (in the training

data was 1.76 m and in the test data 1.82 m). This suggests that

averaging the wind data helps with the simulation.

4.2 Analysis of our model
Wind is a critical factor in ski jumping, so we attempted to capture

its nonlinear effects by including columns for the squared wind

features. However, we found that adding these squared terms did

not significantly reduce the prediction error.

Since the simulation still requires numerous inputs, we made

it interactive, allowing users to adjust the wind conditions and

observe their impact on the jump. In the ski jumping app, users

1
https://camlekn.shinyapps.io/ski-jump/

https://camlekn.shinyapps.io/ski-jump/
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Figure 4: Actual vs. simulated ski jump trajectory

can manipulate sliders to set the wind speed, wind tangent, wind

cross, and wind turbulence for each of the three zones. As a result,

the wind loses its original movement function in the simulation.

All other inputs are set to the average values computed from the

dataset.

5 Discussion
This section examines the predictive performance of the trajec-

tories, highlights the limitations of our current approach, and

suggests directions for future improvements.

5.1 Limitations
Given the relatively small dataset of ski jumps, the main limita-

tion of our project lies in the limited data available for training

the model. After preprocessing, the dataset contained only about

200 jumps, which may limit the SSM’s ability to represent the

full range of trajectory variations under different circumstances.

As a result, the model may struggle to accurately predict jumps

under novel or extreme conditions.

Furthermore, the dataset lacks detailed information, or any

information at all, about individual jumpers, such as body weight,

sex, or other physiological characteristics that are known to in-

fluence jump performance. Incorporating these variables could

improve model accuracy and provide more personalized predic-

tions [5].

Lastly, due to limited computing power, only one CPU was

available, restricting the use of possible better models. To address

these challenges, using cloud-based resources could help run

larger models and improve the prediction of trajectories.

5.2 Future work and potential improvements
Although the current approach shows promise, there are several

avenues for future improvements. Some of which we are working

on at the time of writing this paper.

Currently, we are working on improving the sliders’ functions.

Since the wind data determined by the user is static through-

out the jump, this adds a lot of generalization. In reality, wind

conditions can change rapidly during a jump. So we would like

to add additional controls to the app that would allow the user

to define how the wind changes during the jump. They could

choose whether the wind would gain or lose a certain feature

(such as speed or turbulence) during the jump.

Expanding the dataset to include more jumps and additional

contextual information about individual jumpers could improve

the accuracy of the model. We could try to generate more data by

using data augmentation techniques, such as adding noise to the

wind measurements or slightly modifying the angles. We could

also try to find the nonlinear movements of the wind and inter-

polating the wind measurements by their original time stamps

to better capture the wind dynamics.

6 Conclusion
This paper presents a method for predicting ski jump trajectories

based on environmental conditions. By incorporating external

factors into the modeling framework and applying least squares

estimation, we demonstrated that the model is capable of captur-

ing the dynamics of ski jumps and producing realistic trajectory

predictions. In addition, we developed an interactive application

that makes the results accessible to a broader audience through

simulations and animations of predicted jumps. Although the

current model is limited by the size of the dataset and the ab-

sence of certain athlete-specific variables, the results show that

state-space models are a promising tool for analyzing ski jumping

performance.
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