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Abstract

Decentralized Finance (DeFi) has emerged as a rapidly growing
sector, but it has been plagued by numerous security incidents
resulting in billions of USD in losses [1]. An important challenge
is predicting which security incidents will lead to severe finan-
cial losses, as this can inform risk management and mitigation
strategies. In this paper, we present a novel approach that inte-
grates a semantic knowledge graph of the DeFi ecosystem into
the machine learning pipeline for incident severity prediction.
We construct a knowledge graph capturing rich relationships
between DeFi protocols (including protocol fork lineage, multi-
chain deployments, and historical incidents), and we engineer
graph-based features from this graph to augment traditional inci-
dent features. Using these features in a classification model, we
predict whether an incident will cause above-threshold (severe)
losses. Our results show that incorporating graph-based features
yields a substantial improvement in predictive performance: the
model with semantic graph features achieves an Area Under ROC
Curve (AUC) of 0.787, a 31.6% relative increase over the baseline
model using only non-graph features. We observe particularly
large gains in precision (from 0.341 to 0.490), indicating a signif-
icantly reduced false alarm rate. The findings demonstrate the
practical value of graph-enriched feature engineering for security
analytics in DeFi. This work provides new insights into how pro-
tocol interconnections and characteristics contribute to incident
severity, opening avenues for more robust DeFi risk assessment
tools.
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1 Introduction

Decentralized Finance (DeFi) platforms have experienced rapid
growth, alongside a surge in security breaches such as hacks
and exploits. In 2022 alone, crypto attacks led to over $3.8 billion
in stolen assets, with the majority coming from DeFi protocol
exploits [1]. These incidents vary widely in impact: while many
attacks result in limited losses, a significant fraction escalate
into catastrophic failures causing losses in the tens or hundreds
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of millions of dollars. Predicting which security incidents will
become severe (high-loss) events is crucial for proactive risk man-
agement, insurance underwriting, and developing early warning
systems for the DeFi ecosystem. Prior research has analyzed
DeFi vulnerabilities and attack taxonomy [2], and industry re-
ports highlight the growing scale of DeFi hacks. However, there
is a gap in predictive approaches: existing studies focus on iden-
tifying vulnerabilities or classifying attack types, rather than
forecasting the severity level of an incident before it fully unfolds.
In traditional cybersecurity contexts, incorporating relational
context via knowledge graphs and network models has been
shown to improve threat detection [4]. For example, graph-based
severity triage using attack graphs has been studied in traditional
cybersecurity [7]. In this work, we propose a novel graph-based
feature engineering approach to address this challenge. We con-
struct a semantic knowledge graph of the DeFi ecosystem that
encodes domain knowledge: nodes represent entities such as
protocols and incidents, and edges capture relationships like
“forked-from” (denoting protocol lineage) and “deployed-on” (con-
necting protocols to blockchain platforms), among others. From
this knowledge graph, we derive a set of graph-based features
for each security incident. These features quantify properties
such as a protocol’s structural position in the ecosystem (e.g.,
number of fork “children,” cross-chain deployments, past incident
count), which we posit are predictive of how severe an incident
could be. We integrate these semantic graph features with con-
ventional features (e.g., time of incident, incident type categories)
in a machine learning classifier to predict whether an incident’s
loss will exceed a severity threshold. The contributions of our
work are as follows:

e We introduce a methodology to incorporate a DeFi-specific
knowledge graph into security incident severity predic-
tion.

e We demonstrate significant performance gains over a base-
line model lacking graph features (improving AUC by
31.6% and F1-score by 25%).

e We provide a comprehensive analysis including case stud-
ies. For example, Figure 2 shows a knowledge-graph sub-
network for Convex Finance, illustrating how related pro-
tocol dependencies can influence risk.

e We discuss practical implications of our findings for im-
proving DeFi risk assessment.

All code and data for this work are available in an open-source
repository [5].

2 Methodology

2.1 Knowledge Graph Construction

We built a knowledge graph representing the DeFi ecosystem to
serve as a basis for feature engineering. The graph’s schema de-
fines several entity types and relations relevant to DeFi security:
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Figure 1: DeFi knowledge graph overview: protocols,
blockchains, and incidents with relations (forked-from,
deployed-on, involves).

e Protocol nodes: Each DeFi protocol (e.g., lending plat-
form, DEX, yield aggregator) is a node. Attributes include
protocol name and launch date.

e Incident nodes: Major recorded security incidents (hacks,
exploits) are represented as nodes with attributes such as
date, loss amount, and qualitative classification (e.g., flash
loan, smart contract bug).

e Blockchain nodes: Blockchain platforms (Ethereum, Bi-
nance Smart Chain, etc.) are included to capture deploy-
ment contexts.

Key relationships are encoded as directed edges:

e Fork-of: Connects a protocol to the protocol it was forked
from (if applicable), capturing lineage (e.g., SushiSwap —
Uniswap).

e Deployed-on: Links a protocol to a blockchain platform on
which it is deployed.

o Incident-involves: Links an incident node to the protocol(s)
affected by that incident.
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Figure 2: Convex-centric subgraph. Dependency on Curve
highlights potential severity propagation via upstream vul-
nerabilities.

The knowledge graph was constructed by integrating multiple
data sources on DeFi projects and security events, ensuring se-
mantic consistency in how entities and relations are defined. The
resulting graph captures a rich hierarchical structure of protocol
relationships (including parent-child fork trees and cross-chain
deployment links), as well as the association of past incidents
with protocols. We use Neo4;j to store and query this graph.

2.2 Feature Engineering with Graph-Based
Features

From the knowledge graph, we derived several quantitative fea-
tures that characterize the structural and historical context of
the protocol involved in a given incident:

e Protocol multi-chain count: the number of distinct
blockchains on which the protocol is deployed (degree
of deployed-on edges). A higher count indicates a widely
deployed protocol, potentially implying larger user bases
or attack surfaces.

Fork lineage indicators: whether the protocol is a fork of
another (has parent) and the number of forks derived from
it. These capture if a protocol inherits code (and possibly
vulnerabilities) from a parent and how prevalent its code
is in offspring projects.

Past incident count: the total number of past security
incidents involving the protocol (count of incident-involves
edges to prior incidents). A history of frequent past in-
cidents might signal underlying security weaknesses or
attractive target value.

In addition to these graph-derived features, we include conven-
tional features for each incident:

e Temporal features: the year and month of the incident,
and day-of-week if relevant, to capture any time-related
patterns or trends in attack occurrence.

o Categorical features: the general type of attack or vul-
nerability exploited (e.g., reentrancy, price oracle manipu-
lation), and the asset or protocol category targeted, which
provide contextual information on the incident.
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Figure 3: Workflow: derive graph-based features from the
DeFi knowledge graph and combine with conventional
incident features for classification.

All features are computed or retrieved at the time just before
the incident (to avoid using any post-incident information). The
combination of graph-based features with traditional features
forms the feature vector used for prediction.

2.3 Classification Model and Training

We frame incident severity prediction as a binary classification
task: severe vs. non-severe loss outcome. Following prior work,
we define a severe incident as one with loss exceeding a high
quantile threshold of the loss distribution. In our dataset, the
threshold was the 75th percentile loss of approximately $2.21 mil-
lion, which resulted in 402 incidents labeled as severe out of 1608
total incidents. Our model is a gradient boosting decision tree
classifier (LightGBM [3]), chosen for its efficiency and ability to
handle heterogeneous feature types. We enable LightGBM’s built-
in handling for class imbalance (is_unbalance=True) given that
severe incidents are the minority class (25%). The model is trained
on historical incidents with known outcomes. We use a stratified
5-fold cross-validation on the training set for model selection and
to assess consistency, and finally evaluate on a held-out test set.
We compare two feature sets: a Baseline model using only the
non-graph features (temporal and categorical features, which in-
clude basic incident information), and a Semantic Graph model
using the full feature set including the graph-based features de-
scribed above. Model performance is evaluated primarily with
Area Under the ROC Curve (AUC) to measure ranking perfor-
mance, and we also report Precision, Recall, and F1-score to
understand classification effectiveness.

3 Experiments and Results

3.1 Dataset and Experimental Setup

We compiled a dataset of 1,608 DeFi security incidents that oc-
curred between 2020 and 2025, drawing on public reports and
databases of crypto hacks (e.g., Rekt and other industry sources).
Each incident record includes the loss amount (in USD) and de-
tails such as date and attack type. As described above, incidents
with losses above $2.21 million were labeled as severe, which
yields a severe class prevalence of roughly 25% (402 severe vs.
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Figure 4: Performance comparison. Top: ROC curves (AUC
baseline 0.598 vs. semantic 0.787). Bottom: bar chart for
AUC, F1, precision, recall.

1206 non-severe cases). For training and evaluation, we split
the data chronologically (to emulate predicting future incidents)
into 70% for training (with internal cross-validation for tuning)
and 30% for final testing. The classifier was trained with early
stopping to prevent overfitting. We ensured that any given DeFi
protocol’s incidents are distributed across folds to avoid overesti-
mating performance by learning protocol-specific quirks in both
train and test.

3.2 Performance Comparison

Our results confirm that incorporating graph-based features
markedly improves prediction performance. Table 1 summa-
rizes the evaluation metrics for the baseline and semantic graph-
enhanced models on the test set. The Semantic Graph model
achieves an AUC of 0.787, substantially higher than the base-
line’s 0.598 (a relative improvement of 31.6%). This indicates that
the model with graph features is much better at ranking incidents
by risk. The F1-score also improves from 0.384 to 0.480, reflect-
ing better overall classification accuracy. Notably, the Precision
(positive predictive value) rises from 0.341 to 0.490—a 43.7% in-
crease—while Recall increases slightly from 0.440 to 0.470. This
suggests that the graph-enriched model is significantly more
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Table 1: Performance comparison between the baseline
model (numeric/categorical features only) and the seman-
tic graph model (with knowledge graph features). The se-
mantic model shows substantial gains in all metrics.

Metric Baseline Semantic Graph Improvement
AUC 0.598 0.787 +31.6%
F1-score 0.384 0.480 +25.0%
Precision 0.341 0.490 +43.7%
Recall 0.440 0.470 +6.8%

effective at identifying truly severe incidents (fewer false posi-
tives) without sacrificing the ability to catch most severe cases.
In practical terms, an analyst using the semantic model’s predic-
tions would receive far fewer false alarms for every true severe
incident detected, which is a crucial improvement for real-world
usability. While the absolute values of these metrics might appear
moderate, it is crucial to note that they represent a substantial
improvement over the baseline and are highly competitive for
this specific and challenging prediction task. Figure 4 further il-
lustrates the performance difference. The semantic model’s ROC
curve (solid line) is consistently above the baseline’s (dashed
line), indicating better true positive rates at every false positive
rate. In addition to the hold-out test, we evaluated stability via
cross-validation. The baseline model’s mean AUC across 5 folds
was 0.629 (std 0.036), whereas the semantic model averaged 0.809
(std 0.027). This not only reaffirms the performance boost but also
indicates that the graph-augmented model is more consistent
across different data subsets (lower variance), likely because the
graph features provide a more robust signal that generalizes.

3.3 Feature Importance Analysis

To understand which features contributed most to the improved
predictions, we inspected the feature importance rankings from
the trained LightGBM model. The top features included several
graph-based ones: notably, the protocol past incident count and
protocol multi-chain count were among the highest contributors.
This aligns with intuition—protocols that suffered many past
issues or that operate on many chains (hence complex, with larger
user pools) were more likely to have severe future incidents. The
fork-related features also had significant importance.

4 Discussion

The substantial performance gains achieved by including knowl-
edge graph features underscore the importance of relational
context in DeFi security analysis. The knowledge graph cap-
tures ecosystem-level dependencies that are not apparent from
incident-centric data alone. For instance, our model effectively
learned that incidents on protocols deeply integrated into the
ecosystem (either through many deployments or many forks)
have a higher chance of cascading into severe losses. This reflects
a practical reality: a vulnerability in a widely forked codebase or
a multi-chain protocol can affect numerous users and liquidity
pools, amplifying the impact. Practical applications: Our find-
ings can directly inform DeFi risk assessment practices. Security
teams and auditors could use similar graph-based analysis to iden-
tify “hot spots” in the ecosystem—protocols whose compromise
would likely be particularly damaging. For example, if a protocol
is identified as a central hub in the protocol relationship graph
(due to being extensively forked or connected), extra scrutiny
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or precaution for that protocol is justified. Likewise, insurers
offering DeFi hack coverage can incorporate these graph-derived
risk factors into premium calculations, resulting in pricing that
more accurately reflects protocol risk profiles beyond just histor-
ical loss statistics. The graph-based approach we used is related
to existing work on security graphs and financial graphs. For
instance, graph neural networks (GNNs) have been applied for
fraud detection in cryptocurrency networks [8, 9] and for risk
modeling in financial systems [10-12]. These studies suggest the
broader promise of graph analytics in finance. Similarly, recent
work has explored cybersecurity knowledge graphs [6].

5 Conclusion

We presented a graph-enriched machine learning framework for
predicting the severity of security incidents in the DeFi domain.
By engineering features from a semantic knowledge graph of
DeFi protocols and their relationships, our model achieved no-
tably better performance than traditional approaches using only
flat features. The knowledge graph provided critical context that
improved the identification of high-loss incidents, emphasizing
that understanding where an incident occurs in the DeFi ecosys-
tem is as important as understanding what the incident is. These
results have immediate implications for improving DeFi security
posture. Stakeholders can leverage graph-based analyses to an-
ticipate and mitigate the most dangerous threats. For example,
continuous monitoring of the DeFi knowledge graph could help
detect vulnerable hubs and alert on incidents that involve those
high-risk areas. Our approach can be extended in several direc-
tions: incorporating real-time graph updates to predict emerging
threats, using more complex network metrics, or integrating our
features into GNN models for end-to-end learning. In summary,
graph-based feature engineering offers a powerful and practical
avenue for enhancing security analytics in decentralized finance.
We hope this work inspires further exploration into combining
graph knowledge with machine learning to strengthen the re-
silience of DeFi platforms.
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