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Abstract
This paper describes the challenges and outcomes of forecasting

bike rentals in a Slovenian urban bike-sharing system, focusing

on the impact of data sparsity and the inclusion of external vari-

ables. We address two distinct forecasting tasks: short-horizon,

one-day-ahead predictions for individual rental stations, and

long-horizon, 90-day forecasts for the total rental volume. Vari-

ous machine learning models were employed and evaluated in

this context. We also analyzed the trade-off between using longer

historical data versus shorter, weather-enriched data to improve

predictive accuracy. The findings indicate a clear correlation

between data sparsity at the station level and predictive perfor-

mance. While the inclusion of weather data provides a modest

improvement for both short-horizon and long-horizon forecasts,

the overall quality of the sparse and noisy data appears to limit

the potential gains from more complex modeling approaches.
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1 Introduction
Predicting rental patterns of urban bike-sharing systems is chal-

lenging due to complex dynamics, including strong seasonality

and trends, as well as dependence on external variables such as

weather and calendar effects. Furthermore, data sparsity, par-

ticularly at the individual station level, presents a significant

obstacle to building reliable predictive models. By accurately

predicting bike demand, operators can improve redistribution

and station availability, fostering a more reliable and sustainable

urban mobility system.

This paper addresses these challenges by investigating two dis-

tinct forecasting tasks using a real-world dataset from a Slovenian

city. First, we examine short-horizon, one-day-ahead predictions

for individual stations to quantify the impact of data sparsity on

forecastability. Second, we evaluate the accuracy of 90-day long-

horizon forecasts for the total rental volume aggregated across

all stations. We compare a suite of models, including classical

machine learning approaches and LSTM neural networks [5], and

explicitly analyze the trade-off between using longer historical

data versus shorter, weather-enriched data to improve predictive

accuracy. This work aims to help the bike-sharing systems to

improve operational efficiency, reduce bike shortages, and inform

city planning initiatives related to sustainable transportation.
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Prior studies on bicycle rental forecasting often use the Wash-

ington, D.C. dataset [4]. Du et al. [2] addressed long-horizon

prediction, while Karunanithi et al. [6] focused on short-horizon

forecasting, both achieving results comparable to ours. In con-

trast, our dataset differs substantially by including station-level

information, which enables per-station forecasting. We tackle

both short- and long-horizon tasks, as well as the analysis of the

impact of exogenous weather variables.

2 Data
The dataset we used originates from a public bicycle rental service

in a Slovenian city. It contains daily rental counts for individual

stations within the municipality, covering the period from Janu-

ary 1, 2021, to May 15, 2025. Although the dataset also records

bike return counts, our work focuses exclusively on rentals.

2.1 Features

Figure 1: Pearson correlation coefficients of our features

Dependent Variable: The target feature we are forecasting.
• total_rentals: The total daily number of bike rentals.

Based on the task, this is either the total count across

all stations or per-station bike rental count.

Independent Variables: The features used for prediction.
• Temporal Features:
– date: The specific date.
– ordinal_day: The day number within the year.

– weekday: A category for the day of the week.

– holiday: Indicator (0 or 1) if the day is a holiday.

• Weather-Related Features: Note: Our weather data only
spans the date range of 2024-01-01 to 2025-05-14
– air_temp_2m_C: Air temperature.

– rel_humidity_percent: The relative humidity.

– precipitation_mm: The precipitation per square me-

ter.
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Figure 2: Distribution of bike rentals across all stations. The vertical blue line indicates the start of the year 2024.

2.2 Data Preprocessing
The dataset structure prevented distinguishing missing values

from true zeros (i.e., days when no rentals occurred), so all empty

or null entries were treated as zeros. This resulted in sparsity

for some stations, in which many entries had little information

on rental activity. To prevent this impacting our analysis, we

excluded those with more than 33% zero entries, retaining 25

stations out of the original 48. For the machine learning methods

described later, we also implemented a set of lagged features:
• total_rentals_mean_7_days: Average rental count over
the 7 days preceding the current data point.

• total_rentals_mean_14_days:Average rental count over
the 14 days preceding the current data point.

• total_rentals_mean_21_days:Average rental count over
the 21 days preceding the current data point.

• total_rentals_mean_28_days:Average rental count over
the 28 days preceding the current data point.

Figure 3: Rentals per day of the week

2.3 Exploratory Data Analysis
The data exhibits pronounced weekly and monthly seasonali-

ties, as well as non-stationarity, as illustrated in Figures 3 and 4.

Annual patterns show rental activity declining in winter, rising

in spring, peaking in summer, and gradually decreasing in au-

tumn, with weekends consistently exhibiting lower rental counts.

Anomalous behavior was observed in the winter of 2024, when

rental counts were markedly higher than typical seasonal levels.

The Pearson correlation coefficients (Figure 1) between fea-

tures related to bicycle rentals indicate that the number of daily

rentals (total_rentals) is strongly and positively associated

with recent rental trends, as reflected by correlations of 0.73, 0.67,

0.64, and 0.63 with the 7-, 14-, 21-, and 28-day moving averages,

respectively. A strong positive correlation is also observed with

air temperature (0.59), whereas moderate negative correlations

are found with relative humidity (-0.43) and precipitation (-0.31),

suggesting that rentals are more frequent on warm, dry days.

Weaker associations are present with the day of the week (-0.27)

and holiday status (-0.10). As expected, the moving average fea-

tures exhibit high intercorrelation (e.g., 0.94 between the 7- and

14-day means) due to their overlapping calculation windows.

3 Experiments
This study pursued two primary objectives. First, we examined

the feasibility of forecasting bicycle rentals one day in advance

and evaluated how forecastability varies across stations with

different data sparsity. Second, we investigated long-horizon

forecasting over a 90-day period, focusing exclusively on predict-

ing the total number of rentals. In this task, standard machine

learning models were trained on historical data and then used

recursively to generate forecasts for the entire period. Due to this

setup, the results for DS_W suffer from data leakage. Specifically,

a single model is trained using past rental counts and future

weather information, so, for example, predicting rentals in July

involves access to the actual recorded weather conditions for that

month, which artificially improves performance.

3.1 Training and Test Data Split
Because the available weather data was limited to the years 2024

and 2025, while the rental dataset spanned from 2021 onward,
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Figure 4: Bike rental data with temperate seasons

we constructed three distinct datasets. Here, each entry corre-

sponds to a single day and includes rental data for all stations.

The first dataset, DS_W, combined rental and weather data (498

entries). The second, DS_NO_W, included only rental data for

the same period (498 entries). The third, DS_FULL, comprised

the complete rental dataset without weather data (1,593 entries).

The data splitting strategy differed in the two tasks. For the

station-level one-day-ahead forecasting task, each dataset was

divided into 25 subsets, corresponding to individual stations.

Within each subset, random sampling was used to split the data

into training and testing sets with an 80:20 ratio. The target

variable in each subset is the specific station’s rental count.

For the long-horizon task, no station-level subdivision was

performed, as only total rental counts were modeled. The final

90 days were used as the test set—roughly corresponding to a

temperate season—allowing us to assess whether the models

capture seasonal patterns in a new period while maintaining

realistic temporal separation between training and testing data.

3.2 Models and Algorithms Used
For the long-horizon forecasting task, the AutoARIMA model

served as the baseline, while for the one-day-ahead forecasting

task, the baseline was theMeanRegressor, which predicts using
the 7-day lag mean.

We evaluated several machine learningmodels, includingRan-
dom Forest (500 trees, max_features=0.9), Gradient Boosting
(500 estimators), Linear Regression, and SVM (𝐶 = 10, de-

gree=2, 𝛾 = 0.1, linear kernel). The hyperparameters for the Ran-

dom Forest and SVM models were selected using a grid search

optimization procedure; the rest of the models used default pa-

rameters. For the Random Forest model, only the max_features
parameter was tuned.

We additionally tested deep learning approaches: LSTM (input

size = 96, RMSE loss, 10,000 epochs) and N-BEATSx (input size

= 96, RMSE loss, 500 epochs).

Trainingwas performed on a laptop equippedwith an RTX 3050

GPU (4GB VRAM), which constrained the range of hyperparam-

eter configurations that could be explored, particularly for the

neural network-based approaches.

3.3 Performance evaluation
Model performance was assessed using Root Mean Squared Error

(RMSE) and Mean Absolute Percentage Error (MAPE). Addition-

ally, the Relative Root Mean Squared Error (RRMSE)[1] was used

to enable inter-station performance comparisons in the one-day-

ahead forecasting task. RRMSE is defined as follows:

RRMSE =
RMSE

𝑦
(1)

where 𝑦 is the mean of the target values.

3.4 Results
The results for the one-day-ahead task are presented in Table 1,

with station forecastability visualized in Figure 5. The long-

horizon task outcomes are presented in Table 2.

4 Discussion and conclusion
For the one-day-ahead forecasting task, a clear correlation exists

between station data sparsity (Figure 2) and forecastability (Ta-

ble 1). Stations with fewer rentals or gaps in data are easier to pre-

dict accurately. Interestingly, using theDS_FULL dataset—which

includes data prior to 2024—can reduce modeling accuracy for

certain stations. Including weather features in DS_W leads to

little or no improvement compared to DS_NO_W. For the long-

horizon task, including weather data proves beneficial, as both

classical machine learning models and neural networks show

improved performance (Table 2). However, as described in the

Experiments section, the machine learning results on DS_W are

overly optimistic due to data leakage: the models are trained

on historical rental counts while also accessing future weather

information during recursive forecasting (e.g., predicting rentals

in July uses the actual recorded weather for that month). This

is reflected in the comparison with DS_NO_W, where classi-

cal machine learning methods achieve a 33% mean reduction

in MAPE, while neural network approaches show only a 17%

mean decrease, suggesting that the apparent benefit of weather

data is amplified for classical methods because of this setup. Our

results echo [3] where Gradient Boosting models matched or

outperformed neural networks on several datasets, demonstrat-

ing the effectiveness of simpler models. While neural networks
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Figure 5: Model performance of one-day-head forecasting for different stations for DS_W

Table 1: Average RRMSE of all models of one-day-ahead
forecasting across datasets (RRMSE) and stations.

Station DS_FULL DS_NO_W DS_W

6 0.9210 0.9097 0.9116

7 0.5849 0.5439 0.5488

8 0.7948 0.6821 0.6872

9 0.6532 0.6646 0.6631

10 0.9550 0.7747 0.7753

11 1.0110 1.0034 1.0027
12 0.6028 0.4649 0.4540
13 0.6601 0.4000 0.4022

14 0.6902 0.4840 0.4720
15 0.5218 0.4780 0.4652
16 0.7185 0.5984 0.5975
17 0.8336 0.7337 0.7402

18 0.5274 0.4670 0.4522
21 0.5476 0.5218 0.5215
22 0.5198 0.4171 0.4160
23 0.4783 0.4363 0.4349
24 0.4896 0.4760 0.4696
25 0.6834 0.5570 0.5608

26 0.6506 0.6897 0.6812

27 0.9463 0.9898 0.9595

28 0.5580 0.4898 0.4936

29 0.6008 0.5761 0.5788

30 0.5941 0.5496 0.5531

31 0.8952 0.6452 0.6474

32 0.5453 0.4873 0.4851

Average 0.6793 0.6016 0.5989

could potentially benefit from hyperparameter optimization, the

same applies to other methods as well. A detailed comparison of

different approaches was beyond the scope of this preliminary

study but could be explored in future work.

Table 2: Model performance of 90-day forecasting across
datasets (RMSE / MAPE)

Model DS_FULL DS_NO_W DS_W

AutoARIMA 120.09 / 0.9525 118.50 / 0.9954 118.50 / 0.9954

Random Forest 108.29 / 0.7153 100.94 / 0.7431 76.36 / 0.7014

Gradient Boosting 95.17 / 0.7451 94.96 / 0.9584 74.69 / 0.5513
Linear Regression 90.29 / 0.9372 84.78 / 1.0816 71.71 / 0.8872

SVR 94.86 / 0.8893 87.12 / 0.9507 67.95 / 0.8036

LSTM 112.05 / 0.7133 125.13 / 0.8494 130.00 / 0.8070

NBEATSx 106.49 / 1.0329 128.90 / 0.9972 117.45 / 0.7246

Average 103.89 / 0.8551 105.76 / 0.9394 93.81 / 0.7815
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